Graph neural networks for text classification: a survey
Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global...
Gespeichert in:
Veröffentlicht in: | The Artificial intelligence review 2024-07, Vol.57 (8), p.190, Article 190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 190 |
container_title | The Artificial intelligence review |
container_volume | 57 |
creator | Wang, Kunze Ding, Yihao Han, Soyeon Caren |
description | Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey. |
doi_str_mv | 10.1007/s10462-024-10808-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3074215595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074215595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-a2553a24499db7cd69d960ee4848cae2b5d1646afedb5d6876e913e8a7571d13</originalsourceid><addsrcrecordid>eNp9kE9Lw0AUxBdRsFa_gKeA59W3_xNvUrQKBS-9L9vkRVNjEnc3ar99VyPoydMMj5l58CPknMElAzBXgYHUnAKXlEEOOYUDMmPKCGrS_fCPPyYnIWwBQHEpZsQsvRuesw5H79ok8aP3LyGre59F_IxZ2boQmropXWz67jpzWRj9O-5OyVHt2oBnPzon67vb9eKerh6XD4ubFS25lJE6rpRwyRZFtTFlpYuq0IAoc5mXDvlGVUxL7WqsktW50VgwgbkzyrCKiTm5mGYH37-NGKLd9qPv0kcrwEjOlCpUSvEpVfo-BI-1HXzz6vzOMrBffOzExyY-9puPhVQSUymkcPeE_nf6n9YeLzpnlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074215595</pqid></control><display><type>article</type><title>Graph neural networks for text classification: a survey</title><source>Springer Nature - Complete Springer Journals</source><source>Springer Nature OA/Free Journals</source><creator>Wang, Kunze ; Ding, Yihao ; Han, Soyeon Caren</creator><creatorcontrib>Wang, Kunze ; Ding, Yihao ; Han, Soyeon Caren</creatorcontrib><description>Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.</description><identifier>ISSN: 1573-7462</identifier><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-024-10808-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Classification ; Computer Science ; Deep learning ; Design of experiments ; Documents ; Graph neural networks ; Machine learning ; Natural language processing ; Neural networks ; Text categorization</subject><ispartof>The Artificial intelligence review, 2024-07, Vol.57 (8), p.190, Article 190</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-a2553a24499db7cd69d960ee4848cae2b5d1646afedb5d6876e913e8a7571d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-024-10808-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-024-10808-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,41107,41475,42176,42544,51306,51563</link.rule.ids></links><search><creatorcontrib>Wang, Kunze</creatorcontrib><creatorcontrib>Ding, Yihao</creatorcontrib><creatorcontrib>Han, Soyeon Caren</creatorcontrib><title>Graph neural networks for text classification: a survey</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.</description><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Design of experiments</subject><subject>Documents</subject><subject>Graph neural networks</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Text categorization</subject><issn>1573-7462</issn><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9Lw0AUxBdRsFa_gKeA59W3_xNvUrQKBS-9L9vkRVNjEnc3ar99VyPoydMMj5l58CPknMElAzBXgYHUnAKXlEEOOYUDMmPKCGrS_fCPPyYnIWwBQHEpZsQsvRuesw5H79ok8aP3LyGre59F_IxZ2boQmropXWz67jpzWRj9O-5OyVHt2oBnPzon67vb9eKerh6XD4ubFS25lJE6rpRwyRZFtTFlpYuq0IAoc5mXDvlGVUxL7WqsktW50VgwgbkzyrCKiTm5mGYH37-NGKLd9qPv0kcrwEjOlCpUSvEpVfo-BI-1HXzz6vzOMrBffOzExyY-9puPhVQSUymkcPeE_nf6n9YeLzpnlQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Wang, Kunze</creator><creator>Ding, Yihao</creator><creator>Han, Soyeon Caren</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240701</creationdate><title>Graph neural networks for text classification: a survey</title><author>Wang, Kunze ; Ding, Yihao ; Han, Soyeon Caren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-a2553a24499db7cd69d960ee4848cae2b5d1646afedb5d6876e913e8a7571d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Design of experiments</topic><topic>Documents</topic><topic>Graph neural networks</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Text categorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kunze</creatorcontrib><creatorcontrib>Ding, Yihao</creatorcontrib><creatorcontrib>Han, Soyeon Caren</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kunze</au><au>Ding, Yihao</au><au>Han, Soyeon Caren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph neural networks for text classification: a survey</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>57</volume><issue>8</issue><spage>190</spage><pages>190-</pages><artnum>190</artnum><issn>1573-7462</issn><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-024-10808-0</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-7462 |
ispartof | The Artificial intelligence review, 2024-07, Vol.57 (8), p.190, Article 190 |
issn | 1573-7462 0269-2821 1573-7462 |
language | eng |
recordid | cdi_proquest_journals_3074215595 |
source | Springer Nature - Complete Springer Journals; Springer Nature OA/Free Journals |
subjects | Artificial Intelligence Classification Computer Science Deep learning Design of experiments Documents Graph neural networks Machine learning Natural language processing Neural networks Text categorization |
title | Graph neural networks for text classification: a survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20neural%20networks%20for%20text%20classification:%20a%20survey&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Wang,%20Kunze&rft.date=2024-07-01&rft.volume=57&rft.issue=8&rft.spage=190&rft.pages=190-&rft.artnum=190&rft.issn=1573-7462&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-024-10808-0&rft_dat=%3Cproquest_cross%3E3074215595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074215595&rft_id=info:pmid/&rfr_iscdi=true |