Graph neural networks for text classification: a survey

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review 2024-07, Vol.57 (8), p.190, Article 190
Hauptverfasser: Wang, Kunze, Ding, Yihao, Han, Soyeon Caren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 190
container_title The Artificial intelligence review
container_volume 57
creator Wang, Kunze
Ding, Yihao
Han, Soyeon Caren
description Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.
doi_str_mv 10.1007/s10462-024-10808-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3074215595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074215595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-a2553a24499db7cd69d960ee4848cae2b5d1646afedb5d6876e913e8a7571d13</originalsourceid><addsrcrecordid>eNp9kE9Lw0AUxBdRsFa_gKeA59W3_xNvUrQKBS-9L9vkRVNjEnc3ar99VyPoydMMj5l58CPknMElAzBXgYHUnAKXlEEOOYUDMmPKCGrS_fCPPyYnIWwBQHEpZsQsvRuesw5H79ok8aP3LyGre59F_IxZ2boQmropXWz67jpzWRj9O-5OyVHt2oBnPzon67vb9eKerh6XD4ubFS25lJE6rpRwyRZFtTFlpYuq0IAoc5mXDvlGVUxL7WqsktW50VgwgbkzyrCKiTm5mGYH37-NGKLd9qPv0kcrwEjOlCpUSvEpVfo-BI-1HXzz6vzOMrBffOzExyY-9puPhVQSUymkcPeE_nf6n9YeLzpnlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074215595</pqid></control><display><type>article</type><title>Graph neural networks for text classification: a survey</title><source>Springer Nature - Complete Springer Journals</source><source>Springer Nature OA/Free Journals</source><creator>Wang, Kunze ; Ding, Yihao ; Han, Soyeon Caren</creator><creatorcontrib>Wang, Kunze ; Ding, Yihao ; Han, Soyeon Caren</creatorcontrib><description>Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.</description><identifier>ISSN: 1573-7462</identifier><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-024-10808-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Classification ; Computer Science ; Deep learning ; Design of experiments ; Documents ; Graph neural networks ; Machine learning ; Natural language processing ; Neural networks ; Text categorization</subject><ispartof>The Artificial intelligence review, 2024-07, Vol.57 (8), p.190, Article 190</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-a2553a24499db7cd69d960ee4848cae2b5d1646afedb5d6876e913e8a7571d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-024-10808-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-024-10808-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,41107,41475,42176,42544,51306,51563</link.rule.ids></links><search><creatorcontrib>Wang, Kunze</creatorcontrib><creatorcontrib>Ding, Yihao</creatorcontrib><creatorcontrib>Han, Soyeon Caren</creatorcontrib><title>Graph neural networks for text classification: a survey</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.</description><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Design of experiments</subject><subject>Documents</subject><subject>Graph neural networks</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Text categorization</subject><issn>1573-7462</issn><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9Lw0AUxBdRsFa_gKeA59W3_xNvUrQKBS-9L9vkRVNjEnc3ar99VyPoydMMj5l58CPknMElAzBXgYHUnAKXlEEOOYUDMmPKCGrS_fCPPyYnIWwBQHEpZsQsvRuesw5H79ok8aP3LyGre59F_IxZ2boQmropXWz67jpzWRj9O-5OyVHt2oBnPzon67vb9eKerh6XD4ubFS25lJE6rpRwyRZFtTFlpYuq0IAoc5mXDvlGVUxL7WqsktW50VgwgbkzyrCKiTm5mGYH37-NGKLd9qPv0kcrwEjOlCpUSvEpVfo-BI-1HXzz6vzOMrBffOzExyY-9puPhVQSUymkcPeE_nf6n9YeLzpnlQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Wang, Kunze</creator><creator>Ding, Yihao</creator><creator>Han, Soyeon Caren</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240701</creationdate><title>Graph neural networks for text classification: a survey</title><author>Wang, Kunze ; Ding, Yihao ; Han, Soyeon Caren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-a2553a24499db7cd69d960ee4848cae2b5d1646afedb5d6876e913e8a7571d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Design of experiments</topic><topic>Documents</topic><topic>Graph neural networks</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Text categorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kunze</creatorcontrib><creatorcontrib>Ding, Yihao</creatorcontrib><creatorcontrib>Han, Soyeon Caren</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kunze</au><au>Ding, Yihao</au><au>Han, Soyeon Caren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph neural networks for text classification: a survey</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>57</volume><issue>8</issue><spage>190</spage><pages>190-</pages><artnum>190</artnum><issn>1573-7462</issn><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-024-10808-0</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1573-7462
ispartof The Artificial intelligence review, 2024-07, Vol.57 (8), p.190, Article 190
issn 1573-7462
0269-2821
1573-7462
language eng
recordid cdi_proquest_journals_3074215595
source Springer Nature - Complete Springer Journals; Springer Nature OA/Free Journals
subjects Artificial Intelligence
Classification
Computer Science
Deep learning
Design of experiments
Documents
Graph neural networks
Machine learning
Natural language processing
Neural networks
Text categorization
title Graph neural networks for text classification: a survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20neural%20networks%20for%20text%20classification:%20a%20survey&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Wang,%20Kunze&rft.date=2024-07-01&rft.volume=57&rft.issue=8&rft.spage=190&rft.pages=190-&rft.artnum=190&rft.issn=1573-7462&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-024-10808-0&rft_dat=%3Cproquest_cross%3E3074215595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074215595&rft_id=info:pmid/&rfr_iscdi=true