LoPT: Low-Rank Prompt Tuning for Parameter Efficient Language Models

In prompt tuning, a prefix or suffix text is added to the prompt, and the embeddings (soft prompts) or token indices (hard prompts) of the prefix/suffix are optimized to gain more control over language models for specific tasks. This approach eliminates the need for hand-crafted prompt engineering o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Guo, Shouchang, Damani, Sonam, Keng-hao, Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Guo, Shouchang
Damani, Sonam
Keng-hao, Chang
description In prompt tuning, a prefix or suffix text is added to the prompt, and the embeddings (soft prompts) or token indices (hard prompts) of the prefix/suffix are optimized to gain more control over language models for specific tasks. This approach eliminates the need for hand-crafted prompt engineering or explicit model fine-tuning. Prompt tuning is significantly more parameter-efficient than model fine-tuning, as it involves optimizing partial inputs of language models to produce desired outputs. In this work, we aim to further reduce the amount of trainable parameters required for a language model to perform well on specific tasks. We propose Low-rank Prompt Tuning (LoPT), a low-rank model for prompts that achieves efficient prompt optimization. The proposed method demonstrates similar outcomes to full parameter prompt tuning while reducing the number of trainable parameters by a factor of 5. It also provides promising results compared to the state-of-the-art methods that would require 10 to 20 times more parameters.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3074214429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074214429</sourcerecordid><originalsourceid>FETCH-proquest_journals_30742144293</originalsourceid><addsrcrecordid>eNqNyk8LgjAYgPERBEn5HV7oLMxtZnUto4OBhHcZ9k403Wx_6OvXoQ_Q6Tn8ngWJGOdpsheMrUjs3EApZbucZRmPyLk0VX2E0ryTu9RPqKyZZg910L3uQBkLlbRyQo8WCqX6tkftoZS6C7JDuJkHjm5DlkqODuNf12R7KerTNZmteQV0vhlMsPpLDae5YKkQ7MD_uz6tZjmJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074214429</pqid></control><display><type>article</type><title>LoPT: Low-Rank Prompt Tuning for Parameter Efficient Language Models</title><source>Free E- Journals</source><creator>Guo, Shouchang ; Damani, Sonam ; Keng-hao, Chang</creator><creatorcontrib>Guo, Shouchang ; Damani, Sonam ; Keng-hao, Chang</creatorcontrib><description>In prompt tuning, a prefix or suffix text is added to the prompt, and the embeddings (soft prompts) or token indices (hard prompts) of the prefix/suffix are optimized to gain more control over language models for specific tasks. This approach eliminates the need for hand-crafted prompt engineering or explicit model fine-tuning. Prompt tuning is significantly more parameter-efficient than model fine-tuning, as it involves optimizing partial inputs of language models to produce desired outputs. In this work, we aim to further reduce the amount of trainable parameters required for a language model to perform well on specific tasks. We propose Low-rank Prompt Tuning (LoPT), a low-rank model for prompts that achieves efficient prompt optimization. The proposed method demonstrates similar outcomes to full parameter prompt tuning while reducing the number of trainable parameters by a factor of 5. It also provides promising results compared to the state-of-the-art methods that would require 10 to 20 times more parameters.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Parameters ; Prompt engineering</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Guo, Shouchang</creatorcontrib><creatorcontrib>Damani, Sonam</creatorcontrib><creatorcontrib>Keng-hao, Chang</creatorcontrib><title>LoPT: Low-Rank Prompt Tuning for Parameter Efficient Language Models</title><title>arXiv.org</title><description>In prompt tuning, a prefix or suffix text is added to the prompt, and the embeddings (soft prompts) or token indices (hard prompts) of the prefix/suffix are optimized to gain more control over language models for specific tasks. This approach eliminates the need for hand-crafted prompt engineering or explicit model fine-tuning. Prompt tuning is significantly more parameter-efficient than model fine-tuning, as it involves optimizing partial inputs of language models to produce desired outputs. In this work, we aim to further reduce the amount of trainable parameters required for a language model to perform well on specific tasks. We propose Low-rank Prompt Tuning (LoPT), a low-rank model for prompts that achieves efficient prompt optimization. The proposed method demonstrates similar outcomes to full parameter prompt tuning while reducing the number of trainable parameters by a factor of 5. It also provides promising results compared to the state-of-the-art methods that would require 10 to 20 times more parameters.</description><subject>Parameters</subject><subject>Prompt engineering</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyk8LgjAYgPERBEn5HV7oLMxtZnUto4OBhHcZ9k403Wx_6OvXoQ_Q6Tn8ngWJGOdpsheMrUjs3EApZbucZRmPyLk0VX2E0ryTu9RPqKyZZg910L3uQBkLlbRyQo8WCqX6tkftoZS6C7JDuJkHjm5DlkqODuNf12R7KerTNZmteQV0vhlMsPpLDae5YKkQ7MD_uz6tZjmJ</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Guo, Shouchang</creator><creator>Damani, Sonam</creator><creator>Keng-hao, Chang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240627</creationdate><title>LoPT: Low-Rank Prompt Tuning for Parameter Efficient Language Models</title><author>Guo, Shouchang ; Damani, Sonam ; Keng-hao, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30742144293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Parameters</topic><topic>Prompt engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Shouchang</creatorcontrib><creatorcontrib>Damani, Sonam</creatorcontrib><creatorcontrib>Keng-hao, Chang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Shouchang</au><au>Damani, Sonam</au><au>Keng-hao, Chang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>LoPT: Low-Rank Prompt Tuning for Parameter Efficient Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-06-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In prompt tuning, a prefix or suffix text is added to the prompt, and the embeddings (soft prompts) or token indices (hard prompts) of the prefix/suffix are optimized to gain more control over language models for specific tasks. This approach eliminates the need for hand-crafted prompt engineering or explicit model fine-tuning. Prompt tuning is significantly more parameter-efficient than model fine-tuning, as it involves optimizing partial inputs of language models to produce desired outputs. In this work, we aim to further reduce the amount of trainable parameters required for a language model to perform well on specific tasks. We propose Low-rank Prompt Tuning (LoPT), a low-rank model for prompts that achieves efficient prompt optimization. The proposed method demonstrates similar outcomes to full parameter prompt tuning while reducing the number of trainable parameters by a factor of 5. It also provides promising results compared to the state-of-the-art methods that would require 10 to 20 times more parameters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3074214429
source Free E- Journals
subjects Parameters
Prompt engineering
title LoPT: Low-Rank Prompt Tuning for Parameter Efficient Language Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=LoPT:%20Low-Rank%20Prompt%20Tuning%20for%20Parameter%20Efficient%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Guo,%20Shouchang&rft.date=2024-06-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3074214429%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074214429&rft_id=info:pmid/&rfr_iscdi=true