Artificial intelligence and economic planning

The economic calculation of a central planner has traditionally been argued to result in irrational and inefficient allocation of resources, but this can be reasonably questioned given advances in computing technology, especially artificial intelligence (AI). We conclude that central planning couple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AI & society 2024-06, Vol.39 (3), p.985-1007
Hauptverfasser: Gmeiner, Robert, Harper, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1007
container_issue 3
container_start_page 985
container_title AI & society
container_volume 39
creator Gmeiner, Robert
Harper, Mario
description The economic calculation of a central planner has traditionally been argued to result in irrational and inefficient allocation of resources, but this can be reasonably questioned given advances in computing technology, especially artificial intelligence (AI). We conclude that central planning coupled with AI is still unable to allocate resources with the same efficiency as price signals and market forces through examinations of the technical structure of current AI approaches. AI-driven central planning is not viable in part due to incentives, computing power, knowledge/data acquisition, and speed of collection. There are deep incentive problems for planners, programmers, and ordinary participants to complicate efforts at planning and bias data. Most importantly, AI cannot easily or quickly duplicate the signals of relative scarcity that are generated in markets. Some challenges we highlight are pertinent to planning generally, but many others arise from the introduction of an AI-planner.
doi_str_mv 10.1007/s00146-022-01523-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3073390492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073390492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4d41e23baf0936966fc647049b5a71af64ecd2cba5538f192c524d3e1f04482d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWA6-jL50yWpagVCm50HTKZZEiZZmoyhfrvjY7gztW7i3vug4PQLYF7AlA_ZADCJQZKMRBBGT6doQXhTGAhhThHC1CClCzlJbrKeQcAUjR0gfAqTcEHG8xQhTi5YQi9i9ZVJnaVs2Mc98FWh8HEGGJ_jS68GbK7-b1L9P70-Lbe4O3r88t6tcWWETVh3nHiKGuNB8WkktJbyWvgqhWmJsZL7mxHbWuEYI0nilpBeccc8cB5Qzu2RHfz7iGNH0eXJ70bjymWl5pBzZgqW7S06Nyyacw5Oa8PKexN-tQE9LcWPWvRRYv-0aJPBWIzlEs59i79Tf9DfQHhqmSC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073390492</pqid></control><display><type>article</type><title>Artificial intelligence and economic planning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gmeiner, Robert ; Harper, Mario</creator><creatorcontrib>Gmeiner, Robert ; Harper, Mario</creatorcontrib><description>The economic calculation of a central planner has traditionally been argued to result in irrational and inefficient allocation of resources, but this can be reasonably questioned given advances in computing technology, especially artificial intelligence (AI). We conclude that central planning coupled with AI is still unable to allocate resources with the same efficiency as price signals and market forces through examinations of the technical structure of current AI approaches. AI-driven central planning is not viable in part due to incentives, computing power, knowledge/data acquisition, and speed of collection. There are deep incentive problems for planners, programmers, and ordinary participants to complicate efforts at planning and bias data. Most importantly, AI cannot easily or quickly duplicate the signals of relative scarcity that are generated in markets. Some challenges we highlight are pertinent to planning generally, but many others arise from the introduction of an AI-planner.</description><identifier>ISSN: 0951-5666</identifier><identifier>EISSN: 1435-5655</identifier><identifier>DOI: 10.1007/s00146-022-01523-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Computation ; Computer Science ; Computers ; Control ; Data acquisition ; Economic planning ; Engineering Economics ; Logistics ; Machine learning ; Marketing ; Mechatronics ; Methodology of the Social Sciences ; Open Forum ; Organization ; Performing Arts ; Robotics ; Society ; Stagnation ; Tacit knowledge</subject><ispartof>AI &amp; society, 2024-06, Vol.39 (3), p.985-1007</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4d41e23baf0936966fc647049b5a71af64ecd2cba5538f192c524d3e1f04482d3</citedby><cites>FETCH-LOGICAL-c319t-4d41e23baf0936966fc647049b5a71af64ecd2cba5538f192c524d3e1f04482d3</cites><orcidid>0000-0002-7470-6167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00146-022-01523-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00146-022-01523-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Gmeiner, Robert</creatorcontrib><creatorcontrib>Harper, Mario</creatorcontrib><title>Artificial intelligence and economic planning</title><title>AI &amp; society</title><addtitle>AI &amp; Soc</addtitle><description>The economic calculation of a central planner has traditionally been argued to result in irrational and inefficient allocation of resources, but this can be reasonably questioned given advances in computing technology, especially artificial intelligence (AI). We conclude that central planning coupled with AI is still unable to allocate resources with the same efficiency as price signals and market forces through examinations of the technical structure of current AI approaches. AI-driven central planning is not viable in part due to incentives, computing power, knowledge/data acquisition, and speed of collection. There are deep incentive problems for planners, programmers, and ordinary participants to complicate efforts at planning and bias data. Most importantly, AI cannot easily or quickly duplicate the signals of relative scarcity that are generated in markets. Some challenges we highlight are pertinent to planning generally, but many others arise from the introduction of an AI-planner.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Computers</subject><subject>Control</subject><subject>Data acquisition</subject><subject>Economic planning</subject><subject>Engineering Economics</subject><subject>Logistics</subject><subject>Machine learning</subject><subject>Marketing</subject><subject>Mechatronics</subject><subject>Methodology of the Social Sciences</subject><subject>Open Forum</subject><subject>Organization</subject><subject>Performing Arts</subject><subject>Robotics</subject><subject>Society</subject><subject>Stagnation</subject><subject>Tacit knowledge</subject><issn>0951-5666</issn><issn>1435-5655</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wNWA6-jL50yWpagVCm50HTKZZEiZZmoyhfrvjY7gztW7i3vug4PQLYF7AlA_ZADCJQZKMRBBGT6doQXhTGAhhThHC1CClCzlJbrKeQcAUjR0gfAqTcEHG8xQhTi5YQi9i9ZVJnaVs2Mc98FWh8HEGGJ_jS68GbK7-b1L9P70-Lbe4O3r88t6tcWWETVh3nHiKGuNB8WkktJbyWvgqhWmJsZL7mxHbWuEYI0nilpBeccc8cB5Qzu2RHfz7iGNH0eXJ70bjymWl5pBzZgqW7S06Nyyacw5Oa8PKexN-tQE9LcWPWvRRYv-0aJPBWIzlEs59i79Tf9DfQHhqmSC</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Gmeiner, Robert</creator><creator>Harper, Mario</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7470-6167</orcidid></search><sort><creationdate>20240601</creationdate><title>Artificial intelligence and economic planning</title><author>Gmeiner, Robert ; Harper, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4d41e23baf0936966fc647049b5a71af64ecd2cba5538f192c524d3e1f04482d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Computers</topic><topic>Control</topic><topic>Data acquisition</topic><topic>Economic planning</topic><topic>Engineering Economics</topic><topic>Logistics</topic><topic>Machine learning</topic><topic>Marketing</topic><topic>Mechatronics</topic><topic>Methodology of the Social Sciences</topic><topic>Open Forum</topic><topic>Organization</topic><topic>Performing Arts</topic><topic>Robotics</topic><topic>Society</topic><topic>Stagnation</topic><topic>Tacit knowledge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gmeiner, Robert</creatorcontrib><creatorcontrib>Harper, Mario</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>AI &amp; society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gmeiner, Robert</au><au>Harper, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence and economic planning</atitle><jtitle>AI &amp; society</jtitle><stitle>AI &amp; Soc</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>39</volume><issue>3</issue><spage>985</spage><epage>1007</epage><pages>985-1007</pages><issn>0951-5666</issn><eissn>1435-5655</eissn><abstract>The economic calculation of a central planner has traditionally been argued to result in irrational and inefficient allocation of resources, but this can be reasonably questioned given advances in computing technology, especially artificial intelligence (AI). We conclude that central planning coupled with AI is still unable to allocate resources with the same efficiency as price signals and market forces through examinations of the technical structure of current AI approaches. AI-driven central planning is not viable in part due to incentives, computing power, knowledge/data acquisition, and speed of collection. There are deep incentive problems for planners, programmers, and ordinary participants to complicate efforts at planning and bias data. Most importantly, AI cannot easily or quickly duplicate the signals of relative scarcity that are generated in markets. Some challenges we highlight are pertinent to planning generally, but many others arise from the introduction of an AI-planner.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00146-022-01523-x</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-7470-6167</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-5666
ispartof AI & society, 2024-06, Vol.39 (3), p.985-1007
issn 0951-5666
1435-5655
language eng
recordid cdi_proquest_journals_3073390492
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Computation
Computer Science
Computers
Control
Data acquisition
Economic planning
Engineering Economics
Logistics
Machine learning
Marketing
Mechatronics
Methodology of the Social Sciences
Open Forum
Organization
Performing Arts
Robotics
Society
Stagnation
Tacit knowledge
title Artificial intelligence and economic planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20and%20economic%20planning&rft.jtitle=AI%20&%20society&rft.au=Gmeiner,%20Robert&rft.date=2024-06-01&rft.volume=39&rft.issue=3&rft.spage=985&rft.epage=1007&rft.pages=985-1007&rft.issn=0951-5666&rft.eissn=1435-5655&rft_id=info:doi/10.1007/s00146-022-01523-x&rft_dat=%3Cproquest_cross%3E3073390492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073390492&rft_id=info:pmid/&rfr_iscdi=true