Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection
Laparoscopic liver surgery poses a complex intraoperative dynamic environment for surgeons, where remains a significant challenge to distinguish critical or even hidden structures inside the liver. Liver anatomical landmarks, e.g., ridge and ligament, serve as important markers for 2D-3D alignment,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pei, Jialun Cui, Ruize Li, Yaoqian Si, Weixin Qin, Jing Pheng-Ann Heng |
description | Laparoscopic liver surgery poses a complex intraoperative dynamic environment for surgeons, where remains a significant challenge to distinguish critical or even hidden structures inside the liver. Liver anatomical landmarks, e.g., ridge and ligament, serve as important markers for 2D-3D alignment, which can significantly enhance the spatial perception of surgeons for precise surgery. To facilitate the detection of laparoscopic liver landmarks, we collect a novel dataset called L3D, which comprises 1,152 frames with elaborated landmark annotations from surgical videos of 39 patients across two medical sites. For benchmarking purposes, 12 mainstream detection methods are selected and comprehensively evaluated on L3D. Further, we propose a depth-driven geometric prompt learning network, namely D2GPLand. Specifically, we design a Depth-aware Prompt Embedding (DPE) module that is guided by self-supervised prompts and generates semantically relevant geometric information with the benefit of global depth cues extracted from SAM-based features. Additionally, a Semantic-specific Geometric Augmentation (SGA) scheme is introduced to efficiently merge RGB-D spatial and geometric information through reverse anatomic perception. The experimental results indicate that D2GPLand obtains state-of-the-art performance on L3D, with 63.52% DICE and 48.68% IoU scores. Together with 2D-3D fusion technology, our method can directly provide the surgeon with intuitive guidance information in laparoscopic scenarios. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3073377183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073377183</sourcerecordid><originalsourceid>FETCH-proquest_journals_30733771833</originalsourceid><addsrcrecordid>eNqNi70KwjAURoMgWLTvEHAupIk13a0_Q4cO7hLqraba3HiT-vxW8AGcPjjnfDOWSKXyrNxIuWBpCL0QQm61LAqVsKYCH-9ZRfYNjh8BB4hkW94QDj7yGgw56268Q-K18YYwtOinoJ4OX-Sug6EHryBCGy26FZt35hkg_e2SrQ_78-6UecLXCCFeehzJTeqihFZK67xU6r_qA1q6PvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073377183</pqid></control><display><type>article</type><title>Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection</title><source>Freely Accessible Journals</source><creator>Pei, Jialun ; Cui, Ruize ; Li, Yaoqian ; Si, Weixin ; Qin, Jing ; Pheng-Ann Heng</creator><creatorcontrib>Pei, Jialun ; Cui, Ruize ; Li, Yaoqian ; Si, Weixin ; Qin, Jing ; Pheng-Ann Heng</creatorcontrib><description>Laparoscopic liver surgery poses a complex intraoperative dynamic environment for surgeons, where remains a significant challenge to distinguish critical or even hidden structures inside the liver. Liver anatomical landmarks, e.g., ridge and ligament, serve as important markers for 2D-3D alignment, which can significantly enhance the spatial perception of surgeons for precise surgery. To facilitate the detection of laparoscopic liver landmarks, we collect a novel dataset called L3D, which comprises 1,152 frames with elaborated landmark annotations from surgical videos of 39 patients across two medical sites. For benchmarking purposes, 12 mainstream detection methods are selected and comprehensively evaluated on L3D. Further, we propose a depth-driven geometric prompt learning network, namely D2GPLand. Specifically, we design a Depth-aware Prompt Embedding (DPE) module that is guided by self-supervised prompts and generates semantically relevant geometric information with the benefit of global depth cues extracted from SAM-based features. Additionally, a Semantic-specific Geometric Augmentation (SGA) scheme is introduced to efficiently merge RGB-D spatial and geometric information through reverse anatomic perception. The experimental results indicate that D2GPLand obtains state-of-the-art performance on L3D, with 63.52% DICE and 48.68% IoU scores. Together with 2D-3D fusion technology, our method can directly provide the surgeon with intuitive guidance information in laparoscopic scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Laparoscopy ; Learning ; Liver ; Perception ; Surgeons ; Surgery</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Pei, Jialun</creatorcontrib><creatorcontrib>Cui, Ruize</creatorcontrib><creatorcontrib>Li, Yaoqian</creatorcontrib><creatorcontrib>Si, Weixin</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Pheng-Ann Heng</creatorcontrib><title>Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection</title><title>arXiv.org</title><description>Laparoscopic liver surgery poses a complex intraoperative dynamic environment for surgeons, where remains a significant challenge to distinguish critical or even hidden structures inside the liver. Liver anatomical landmarks, e.g., ridge and ligament, serve as important markers for 2D-3D alignment, which can significantly enhance the spatial perception of surgeons for precise surgery. To facilitate the detection of laparoscopic liver landmarks, we collect a novel dataset called L3D, which comprises 1,152 frames with elaborated landmark annotations from surgical videos of 39 patients across two medical sites. For benchmarking purposes, 12 mainstream detection methods are selected and comprehensively evaluated on L3D. Further, we propose a depth-driven geometric prompt learning network, namely D2GPLand. Specifically, we design a Depth-aware Prompt Embedding (DPE) module that is guided by self-supervised prompts and generates semantically relevant geometric information with the benefit of global depth cues extracted from SAM-based features. Additionally, a Semantic-specific Geometric Augmentation (SGA) scheme is introduced to efficiently merge RGB-D spatial and geometric information through reverse anatomic perception. The experimental results indicate that D2GPLand obtains state-of-the-art performance on L3D, with 63.52% DICE and 48.68% IoU scores. Together with 2D-3D fusion technology, our method can directly provide the surgeon with intuitive guidance information in laparoscopic scenarios.</description><subject>Annotations</subject><subject>Laparoscopy</subject><subject>Learning</subject><subject>Liver</subject><subject>Perception</subject><subject>Surgeons</subject><subject>Surgery</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAURoMgWLTvEHAupIk13a0_Q4cO7hLqraba3HiT-vxW8AGcPjjnfDOWSKXyrNxIuWBpCL0QQm61LAqVsKYCH-9ZRfYNjh8BB4hkW94QDj7yGgw56268Q-K18YYwtOinoJ4OX-Sug6EHryBCGy26FZt35hkg_e2SrQ_78-6UecLXCCFeehzJTeqihFZK67xU6r_qA1q6PvY</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Pei, Jialun</creator><creator>Cui, Ruize</creator><creator>Li, Yaoqian</creator><creator>Si, Weixin</creator><creator>Qin, Jing</creator><creator>Pheng-Ann Heng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240627</creationdate><title>Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection</title><author>Pei, Jialun ; Cui, Ruize ; Li, Yaoqian ; Si, Weixin ; Qin, Jing ; Pheng-Ann Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30733771833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Laparoscopy</topic><topic>Learning</topic><topic>Liver</topic><topic>Perception</topic><topic>Surgeons</topic><topic>Surgery</topic><toplevel>online_resources</toplevel><creatorcontrib>Pei, Jialun</creatorcontrib><creatorcontrib>Cui, Ruize</creatorcontrib><creatorcontrib>Li, Yaoqian</creatorcontrib><creatorcontrib>Si, Weixin</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Pheng-Ann Heng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Jialun</au><au>Cui, Ruize</au><au>Li, Yaoqian</au><au>Si, Weixin</au><au>Qin, Jing</au><au>Pheng-Ann Heng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection</atitle><jtitle>arXiv.org</jtitle><date>2024-06-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Laparoscopic liver surgery poses a complex intraoperative dynamic environment for surgeons, where remains a significant challenge to distinguish critical or even hidden structures inside the liver. Liver anatomical landmarks, e.g., ridge and ligament, serve as important markers for 2D-3D alignment, which can significantly enhance the spatial perception of surgeons for precise surgery. To facilitate the detection of laparoscopic liver landmarks, we collect a novel dataset called L3D, which comprises 1,152 frames with elaborated landmark annotations from surgical videos of 39 patients across two medical sites. For benchmarking purposes, 12 mainstream detection methods are selected and comprehensively evaluated on L3D. Further, we propose a depth-driven geometric prompt learning network, namely D2GPLand. Specifically, we design a Depth-aware Prompt Embedding (DPE) module that is guided by self-supervised prompts and generates semantically relevant geometric information with the benefit of global depth cues extracted from SAM-based features. Additionally, a Semantic-specific Geometric Augmentation (SGA) scheme is introduced to efficiently merge RGB-D spatial and geometric information through reverse anatomic perception. The experimental results indicate that D2GPLand obtains state-of-the-art performance on L3D, with 63.52% DICE and 48.68% IoU scores. Together with 2D-3D fusion technology, our method can directly provide the surgeon with intuitive guidance information in laparoscopic scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3073377183 |
source | Freely Accessible Journals |
subjects | Annotations Laparoscopy Learning Liver Perception Surgeons Surgery |
title | Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Depth-Driven%20Geometric%20Prompt%20Learning%20for%20Laparoscopic%20Liver%20Landmark%20Detection&rft.jtitle=arXiv.org&rft.au=Pei,%20Jialun&rft.date=2024-06-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3073377183%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073377183&rft_id=info:pmid/&rfr_iscdi=true |