Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection

Laparoscopic liver surgery poses a complex intraoperative dynamic environment for surgeons, where remains a significant challenge to distinguish critical or even hidden structures inside the liver. Liver anatomical landmarks, e.g., ridge and ligament, serve as important markers for 2D-3D alignment,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Pei, Jialun, Cui, Ruize, Li, Yaoqian, Si, Weixin, Qin, Jing, Pheng-Ann Heng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pei, Jialun
Cui, Ruize
Li, Yaoqian
Si, Weixin
Qin, Jing
Pheng-Ann Heng
description Laparoscopic liver surgery poses a complex intraoperative dynamic environment for surgeons, where remains a significant challenge to distinguish critical or even hidden structures inside the liver. Liver anatomical landmarks, e.g., ridge and ligament, serve as important markers for 2D-3D alignment, which can significantly enhance the spatial perception of surgeons for precise surgery. To facilitate the detection of laparoscopic liver landmarks, we collect a novel dataset called L3D, which comprises 1,152 frames with elaborated landmark annotations from surgical videos of 39 patients across two medical sites. For benchmarking purposes, 12 mainstream detection methods are selected and comprehensively evaluated on L3D. Further, we propose a depth-driven geometric prompt learning network, namely D2GPLand. Specifically, we design a Depth-aware Prompt Embedding (DPE) module that is guided by self-supervised prompts and generates semantically relevant geometric information with the benefit of global depth cues extracted from SAM-based features. Additionally, a Semantic-specific Geometric Augmentation (SGA) scheme is introduced to efficiently merge RGB-D spatial and geometric information through reverse anatomic perception. The experimental results indicate that D2GPLand obtains state-of-the-art performance on L3D, with 63.52% DICE and 48.68% IoU scores. Together with 2D-3D fusion technology, our method can directly provide the surgeon with intuitive guidance information in laparoscopic scenarios.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3073377183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073377183</sourcerecordid><originalsourceid>FETCH-proquest_journals_30733771833</originalsourceid><addsrcrecordid>eNqNi70KwjAURoMgWLTvEHAupIk13a0_Q4cO7hLqraba3HiT-vxW8AGcPjjnfDOWSKXyrNxIuWBpCL0QQm61LAqVsKYCH-9ZRfYNjh8BB4hkW94QDj7yGgw56268Q-K18YYwtOinoJ4OX-Sug6EHryBCGy26FZt35hkg_e2SrQ_78-6UecLXCCFeehzJTeqihFZK67xU6r_qA1q6PvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073377183</pqid></control><display><type>article</type><title>Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection</title><source>Freely Accessible Journals</source><creator>Pei, Jialun ; Cui, Ruize ; Li, Yaoqian ; Si, Weixin ; Qin, Jing ; Pheng-Ann Heng</creator><creatorcontrib>Pei, Jialun ; Cui, Ruize ; Li, Yaoqian ; Si, Weixin ; Qin, Jing ; Pheng-Ann Heng</creatorcontrib><description>Laparoscopic liver surgery poses a complex intraoperative dynamic environment for surgeons, where remains a significant challenge to distinguish critical or even hidden structures inside the liver. Liver anatomical landmarks, e.g., ridge and ligament, serve as important markers for 2D-3D alignment, which can significantly enhance the spatial perception of surgeons for precise surgery. To facilitate the detection of laparoscopic liver landmarks, we collect a novel dataset called L3D, which comprises 1,152 frames with elaborated landmark annotations from surgical videos of 39 patients across two medical sites. For benchmarking purposes, 12 mainstream detection methods are selected and comprehensively evaluated on L3D. Further, we propose a depth-driven geometric prompt learning network, namely D2GPLand. Specifically, we design a Depth-aware Prompt Embedding (DPE) module that is guided by self-supervised prompts and generates semantically relevant geometric information with the benefit of global depth cues extracted from SAM-based features. Additionally, a Semantic-specific Geometric Augmentation (SGA) scheme is introduced to efficiently merge RGB-D spatial and geometric information through reverse anatomic perception. The experimental results indicate that D2GPLand obtains state-of-the-art performance on L3D, with 63.52% DICE and 48.68% IoU scores. Together with 2D-3D fusion technology, our method can directly provide the surgeon with intuitive guidance information in laparoscopic scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Laparoscopy ; Learning ; Liver ; Perception ; Surgeons ; Surgery</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Pei, Jialun</creatorcontrib><creatorcontrib>Cui, Ruize</creatorcontrib><creatorcontrib>Li, Yaoqian</creatorcontrib><creatorcontrib>Si, Weixin</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Pheng-Ann Heng</creatorcontrib><title>Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection</title><title>arXiv.org</title><description>Laparoscopic liver surgery poses a complex intraoperative dynamic environment for surgeons, where remains a significant challenge to distinguish critical or even hidden structures inside the liver. Liver anatomical landmarks, e.g., ridge and ligament, serve as important markers for 2D-3D alignment, which can significantly enhance the spatial perception of surgeons for precise surgery. To facilitate the detection of laparoscopic liver landmarks, we collect a novel dataset called L3D, which comprises 1,152 frames with elaborated landmark annotations from surgical videos of 39 patients across two medical sites. For benchmarking purposes, 12 mainstream detection methods are selected and comprehensively evaluated on L3D. Further, we propose a depth-driven geometric prompt learning network, namely D2GPLand. Specifically, we design a Depth-aware Prompt Embedding (DPE) module that is guided by self-supervised prompts and generates semantically relevant geometric information with the benefit of global depth cues extracted from SAM-based features. Additionally, a Semantic-specific Geometric Augmentation (SGA) scheme is introduced to efficiently merge RGB-D spatial and geometric information through reverse anatomic perception. The experimental results indicate that D2GPLand obtains state-of-the-art performance on L3D, with 63.52% DICE and 48.68% IoU scores. Together with 2D-3D fusion technology, our method can directly provide the surgeon with intuitive guidance information in laparoscopic scenarios.</description><subject>Annotations</subject><subject>Laparoscopy</subject><subject>Learning</subject><subject>Liver</subject><subject>Perception</subject><subject>Surgeons</subject><subject>Surgery</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAURoMgWLTvEHAupIk13a0_Q4cO7hLqraba3HiT-vxW8AGcPjjnfDOWSKXyrNxIuWBpCL0QQm61LAqVsKYCH-9ZRfYNjh8BB4hkW94QDj7yGgw56268Q-K18YYwtOinoJ4OX-Sug6EHryBCGy26FZt35hkg_e2SrQ_78-6UecLXCCFeehzJTeqihFZK67xU6r_qA1q6PvY</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Pei, Jialun</creator><creator>Cui, Ruize</creator><creator>Li, Yaoqian</creator><creator>Si, Weixin</creator><creator>Qin, Jing</creator><creator>Pheng-Ann Heng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240627</creationdate><title>Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection</title><author>Pei, Jialun ; Cui, Ruize ; Li, Yaoqian ; Si, Weixin ; Qin, Jing ; Pheng-Ann Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30733771833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Laparoscopy</topic><topic>Learning</topic><topic>Liver</topic><topic>Perception</topic><topic>Surgeons</topic><topic>Surgery</topic><toplevel>online_resources</toplevel><creatorcontrib>Pei, Jialun</creatorcontrib><creatorcontrib>Cui, Ruize</creatorcontrib><creatorcontrib>Li, Yaoqian</creatorcontrib><creatorcontrib>Si, Weixin</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Pheng-Ann Heng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Jialun</au><au>Cui, Ruize</au><au>Li, Yaoqian</au><au>Si, Weixin</au><au>Qin, Jing</au><au>Pheng-Ann Heng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection</atitle><jtitle>arXiv.org</jtitle><date>2024-06-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Laparoscopic liver surgery poses a complex intraoperative dynamic environment for surgeons, where remains a significant challenge to distinguish critical or even hidden structures inside the liver. Liver anatomical landmarks, e.g., ridge and ligament, serve as important markers for 2D-3D alignment, which can significantly enhance the spatial perception of surgeons for precise surgery. To facilitate the detection of laparoscopic liver landmarks, we collect a novel dataset called L3D, which comprises 1,152 frames with elaborated landmark annotations from surgical videos of 39 patients across two medical sites. For benchmarking purposes, 12 mainstream detection methods are selected and comprehensively evaluated on L3D. Further, we propose a depth-driven geometric prompt learning network, namely D2GPLand. Specifically, we design a Depth-aware Prompt Embedding (DPE) module that is guided by self-supervised prompts and generates semantically relevant geometric information with the benefit of global depth cues extracted from SAM-based features. Additionally, a Semantic-specific Geometric Augmentation (SGA) scheme is introduced to efficiently merge RGB-D spatial and geometric information through reverse anatomic perception. The experimental results indicate that D2GPLand obtains state-of-the-art performance on L3D, with 63.52% DICE and 48.68% IoU scores. Together with 2D-3D fusion technology, our method can directly provide the surgeon with intuitive guidance information in laparoscopic scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3073377183
source Freely Accessible Journals
subjects Annotations
Laparoscopy
Learning
Liver
Perception
Surgeons
Surgery
title Depth-Driven Geometric Prompt Learning for Laparoscopic Liver Landmark Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Depth-Driven%20Geometric%20Prompt%20Learning%20for%20Laparoscopic%20Liver%20Landmark%20Detection&rft.jtitle=arXiv.org&rft.au=Pei,%20Jialun&rft.date=2024-06-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3073377183%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073377183&rft_id=info:pmid/&rfr_iscdi=true