An 8b-Precision 6T SRAM Computing-in-Memory Macro Using Time-Domain Incremental Accumulation for AI Edge Chips

This article presents a novel static random access memory computing-in-memory (SRAM-CIM) structure designed for high-precision multiply-and-accumulate (MAC) operations with high energy efficiency (EF), high readout accuracy, and short compute latency. The proposed device employs 1) a time-domain inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2024-07, Vol.59 (7), p.2297-2309
Hauptverfasser: Wu, Ping-Chun, Su, Jian-Wei, Chung, Yen-Lin, Hong, Li-Yang, Ren, Jin-Sheng, Chang, Fu-Chun, Wu, Yuan, Chen, Ho-Yu, Lin, Chen-Hsun, Hsiao, Hsu-Ming, Li, Sih-Han, Sheu, Shyh-Shyuan, Chang, Shih-Chieh, Lo, Wei-Chung, Wu, Chih-I, Lo, Chung-Chuan, Liu, Ren-Shuo, Hsieh, Chih-Cheng, Tang, Kea-Tiong, Chang, Meng-Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2309
container_issue 7
container_start_page 2297
container_title IEEE journal of solid-state circuits
container_volume 59
creator Wu, Ping-Chun
Su, Jian-Wei
Chung, Yen-Lin
Hong, Li-Yang
Ren, Jin-Sheng
Chang, Fu-Chun
Wu, Yuan
Chen, Ho-Yu
Lin, Chen-Hsun
Hsiao, Hsu-Ming
Li, Sih-Han
Sheu, Shyh-Shyuan
Chang, Shih-Chieh
Lo, Wei-Chung
Wu, Chih-I
Lo, Chung-Chuan
Liu, Ren-Shuo
Hsieh, Chih-Cheng
Tang, Kea-Tiong
Chang, Meng-Fan
description This article presents a novel static random access memory computing-in-memory (SRAM-CIM) structure designed for high-precision multiply-and-accumulate (MAC) operations with high energy efficiency (EF), high readout accuracy, and short compute latency. The proposed device employs 1) a time-domain incremental-accumulation (TDIA) scheme to enable high-accumulation MAC operations while maintaining a large signal margin across MAC values (MACVs), 2) a dynamic differential-reference (D2REF) scheme based on software-hardware co-design to reduce read energy consumption, and 3) a low-dMACV-aware recursive time-to-digital converter (LMAR-TDC) for implementation with the D2REF scheme to further suppress readout energy consumption. A 28 nm 1 Mb SRAM-CIM macro fabricated using foundry-provided compact 6T-SRAM cells achieved EF of 39.31 TOPS/W and compute latency of 6.6 ns for 8b-MAC operations with 64 accumulations per cycle and near-full output precision (22b).
doi_str_mv 10.1109/JSSC.2023.3343669
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3073305602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10376238</ieee_id><sourcerecordid>3073305602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-4d33df8086695e43fbf665718d70e7006218e5f90e5ed4b803647573cd41d70a3</originalsourceid><addsrcrecordid>eNpNkEFLw0AQhRdRsFZ_gOBhwfPW3cxmszmGWLXSotgWvIU0mdQtzabuJof-exPag6dhhvfe8D5C7gWfCMHjp_flMp0EPIAJgASl4gsyEmGomYjg-5KMOBeaxQHn1-TG-12_SqnFiNjEUr1hnw4L401jqVrR5VeyoGlTH7rW2C0zli2wbtyRLvLCNXTt-ytdmRrZc1PnxtKZLRzWaNt8T5Oi6Opun7dDWNU4mszotNwiTX_Mwd-Sqyrfe7w7zzFZv0xX6Rubf7zO0mTOikCqlskSoKw0132RECVUm0qpMBK6jDhGnKtAaAyrmGOIpdxoDkpGYQRFKUUvyWFMHk-5B9f8dujbbNd0zvYvM-ARAA9Vz2pMxEnV1_LeYZUdnKlzd8wEzwas2YA1G7BmZ6y95-HkMYj4Tw-RCkDDH9uxcZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073305602</pqid></control><display><type>article</type><title>An 8b-Precision 6T SRAM Computing-in-Memory Macro Using Time-Domain Incremental Accumulation for AI Edge Chips</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Ping-Chun ; Su, Jian-Wei ; Chung, Yen-Lin ; Hong, Li-Yang ; Ren, Jin-Sheng ; Chang, Fu-Chun ; Wu, Yuan ; Chen, Ho-Yu ; Lin, Chen-Hsun ; Hsiao, Hsu-Ming ; Li, Sih-Han ; Sheu, Shyh-Shyuan ; Chang, Shih-Chieh ; Lo, Wei-Chung ; Wu, Chih-I ; Lo, Chung-Chuan ; Liu, Ren-Shuo ; Hsieh, Chih-Cheng ; Tang, Kea-Tiong ; Chang, Meng-Fan</creator><creatorcontrib>Wu, Ping-Chun ; Su, Jian-Wei ; Chung, Yen-Lin ; Hong, Li-Yang ; Ren, Jin-Sheng ; Chang, Fu-Chun ; Wu, Yuan ; Chen, Ho-Yu ; Lin, Chen-Hsun ; Hsiao, Hsu-Ming ; Li, Sih-Han ; Sheu, Shyh-Shyuan ; Chang, Shih-Chieh ; Lo, Wei-Chung ; Wu, Chih-I ; Lo, Chung-Chuan ; Liu, Ren-Shuo ; Hsieh, Chih-Cheng ; Tang, Kea-Tiong ; Chang, Meng-Fan</creatorcontrib><description>This article presents a novel static random access memory computing-in-memory (SRAM-CIM) structure designed for high-precision multiply-and-accumulate (MAC) operations with high energy efficiency (EF), high readout accuracy, and short compute latency. The proposed device employs 1) a time-domain incremental-accumulation (TDIA) scheme to enable high-accumulation MAC operations while maintaining a large signal margin across MAC values (MACVs), 2) a dynamic differential-reference (D2REF) scheme based on software-hardware co-design to reduce read energy consumption, and 3) a low-dMACV-aware recursive time-to-digital converter (LMAR-TDC) for implementation with the D2REF scheme to further suppress readout energy consumption. A 28 nm 1 Mb SRAM-CIM macro fabricated using foundry-provided compact 6T-SRAM cells achieved EF of 39.31 TOPS/W and compute latency of 6.6 ns for 8b-MAC operations with 64 accumulations per cycle and near-full output precision (22b).</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2023.3343669</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accumulation ; Artificial intelligence ; Artificial intelligence (AI) ; Co-design ; Computation ; computing-in-memory (CIM) ; Edge AI ; Energy consumption ; In-memory computing ; inference ; Inference mechanisms ; multiply-and-accumulate (MAC) ; SRAM cells ; Static random access memory ; static random access memory (SRAM) ; Time domain analysis</subject><ispartof>IEEE journal of solid-state circuits, 2024-07, Vol.59 (7), p.2297-2309</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-4d33df8086695e43fbf665718d70e7006218e5f90e5ed4b803647573cd41d70a3</cites><orcidid>0000-0002-9689-1236 ; 0000-0003-4070-5059 ; 0000-0002-5311-4955 ; 0000-0001-7566-8185 ; 0000-0001-6905-6350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10376238$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10376238$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Ping-Chun</creatorcontrib><creatorcontrib>Su, Jian-Wei</creatorcontrib><creatorcontrib>Chung, Yen-Lin</creatorcontrib><creatorcontrib>Hong, Li-Yang</creatorcontrib><creatorcontrib>Ren, Jin-Sheng</creatorcontrib><creatorcontrib>Chang, Fu-Chun</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Chen, Ho-Yu</creatorcontrib><creatorcontrib>Lin, Chen-Hsun</creatorcontrib><creatorcontrib>Hsiao, Hsu-Ming</creatorcontrib><creatorcontrib>Li, Sih-Han</creatorcontrib><creatorcontrib>Sheu, Shyh-Shyuan</creatorcontrib><creatorcontrib>Chang, Shih-Chieh</creatorcontrib><creatorcontrib>Lo, Wei-Chung</creatorcontrib><creatorcontrib>Wu, Chih-I</creatorcontrib><creatorcontrib>Lo, Chung-Chuan</creatorcontrib><creatorcontrib>Liu, Ren-Shuo</creatorcontrib><creatorcontrib>Hsieh, Chih-Cheng</creatorcontrib><creatorcontrib>Tang, Kea-Tiong</creatorcontrib><creatorcontrib>Chang, Meng-Fan</creatorcontrib><title>An 8b-Precision 6T SRAM Computing-in-Memory Macro Using Time-Domain Incremental Accumulation for AI Edge Chips</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This article presents a novel static random access memory computing-in-memory (SRAM-CIM) structure designed for high-precision multiply-and-accumulate (MAC) operations with high energy efficiency (EF), high readout accuracy, and short compute latency. The proposed device employs 1) a time-domain incremental-accumulation (TDIA) scheme to enable high-accumulation MAC operations while maintaining a large signal margin across MAC values (MACVs), 2) a dynamic differential-reference (D2REF) scheme based on software-hardware co-design to reduce read energy consumption, and 3) a low-dMACV-aware recursive time-to-digital converter (LMAR-TDC) for implementation with the D2REF scheme to further suppress readout energy consumption. A 28 nm 1 Mb SRAM-CIM macro fabricated using foundry-provided compact 6T-SRAM cells achieved EF of 39.31 TOPS/W and compute latency of 6.6 ns for 8b-MAC operations with 64 accumulations per cycle and near-full output precision (22b).</description><subject>Accumulation</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>Co-design</subject><subject>Computation</subject><subject>computing-in-memory (CIM)</subject><subject>Edge AI</subject><subject>Energy consumption</subject><subject>In-memory computing</subject><subject>inference</subject><subject>Inference mechanisms</subject><subject>multiply-and-accumulate (MAC)</subject><subject>SRAM cells</subject><subject>Static random access memory</subject><subject>static random access memory (SRAM)</subject><subject>Time domain analysis</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLw0AQhRdRsFZ_gOBhwfPW3cxmszmGWLXSotgWvIU0mdQtzabuJof-exPag6dhhvfe8D5C7gWfCMHjp_flMp0EPIAJgASl4gsyEmGomYjg-5KMOBeaxQHn1-TG-12_SqnFiNjEUr1hnw4L401jqVrR5VeyoGlTH7rW2C0zli2wbtyRLvLCNXTt-ytdmRrZc1PnxtKZLRzWaNt8T5Oi6Opun7dDWNU4mszotNwiTX_Mwd-Sqyrfe7w7zzFZv0xX6Rubf7zO0mTOikCqlskSoKw0132RECVUm0qpMBK6jDhGnKtAaAyrmGOIpdxoDkpGYQRFKUUvyWFMHk-5B9f8dujbbNd0zvYvM-ARAA9Vz2pMxEnV1_LeYZUdnKlzd8wEzwas2YA1G7BmZ6y95-HkMYj4Tw-RCkDDH9uxcZY</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Wu, Ping-Chun</creator><creator>Su, Jian-Wei</creator><creator>Chung, Yen-Lin</creator><creator>Hong, Li-Yang</creator><creator>Ren, Jin-Sheng</creator><creator>Chang, Fu-Chun</creator><creator>Wu, Yuan</creator><creator>Chen, Ho-Yu</creator><creator>Lin, Chen-Hsun</creator><creator>Hsiao, Hsu-Ming</creator><creator>Li, Sih-Han</creator><creator>Sheu, Shyh-Shyuan</creator><creator>Chang, Shih-Chieh</creator><creator>Lo, Wei-Chung</creator><creator>Wu, Chih-I</creator><creator>Lo, Chung-Chuan</creator><creator>Liu, Ren-Shuo</creator><creator>Hsieh, Chih-Cheng</creator><creator>Tang, Kea-Tiong</creator><creator>Chang, Meng-Fan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9689-1236</orcidid><orcidid>https://orcid.org/0000-0003-4070-5059</orcidid><orcidid>https://orcid.org/0000-0002-5311-4955</orcidid><orcidid>https://orcid.org/0000-0001-7566-8185</orcidid><orcidid>https://orcid.org/0000-0001-6905-6350</orcidid></search><sort><creationdate>20240701</creationdate><title>An 8b-Precision 6T SRAM Computing-in-Memory Macro Using Time-Domain Incremental Accumulation for AI Edge Chips</title><author>Wu, Ping-Chun ; Su, Jian-Wei ; Chung, Yen-Lin ; Hong, Li-Yang ; Ren, Jin-Sheng ; Chang, Fu-Chun ; Wu, Yuan ; Chen, Ho-Yu ; Lin, Chen-Hsun ; Hsiao, Hsu-Ming ; Li, Sih-Han ; Sheu, Shyh-Shyuan ; Chang, Shih-Chieh ; Lo, Wei-Chung ; Wu, Chih-I ; Lo, Chung-Chuan ; Liu, Ren-Shuo ; Hsieh, Chih-Cheng ; Tang, Kea-Tiong ; Chang, Meng-Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-4d33df8086695e43fbf665718d70e7006218e5f90e5ed4b803647573cd41d70a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>Co-design</topic><topic>Computation</topic><topic>computing-in-memory (CIM)</topic><topic>Edge AI</topic><topic>Energy consumption</topic><topic>In-memory computing</topic><topic>inference</topic><topic>Inference mechanisms</topic><topic>multiply-and-accumulate (MAC)</topic><topic>SRAM cells</topic><topic>Static random access memory</topic><topic>static random access memory (SRAM)</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ping-Chun</creatorcontrib><creatorcontrib>Su, Jian-Wei</creatorcontrib><creatorcontrib>Chung, Yen-Lin</creatorcontrib><creatorcontrib>Hong, Li-Yang</creatorcontrib><creatorcontrib>Ren, Jin-Sheng</creatorcontrib><creatorcontrib>Chang, Fu-Chun</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Chen, Ho-Yu</creatorcontrib><creatorcontrib>Lin, Chen-Hsun</creatorcontrib><creatorcontrib>Hsiao, Hsu-Ming</creatorcontrib><creatorcontrib>Li, Sih-Han</creatorcontrib><creatorcontrib>Sheu, Shyh-Shyuan</creatorcontrib><creatorcontrib>Chang, Shih-Chieh</creatorcontrib><creatorcontrib>Lo, Wei-Chung</creatorcontrib><creatorcontrib>Wu, Chih-I</creatorcontrib><creatorcontrib>Lo, Chung-Chuan</creatorcontrib><creatorcontrib>Liu, Ren-Shuo</creatorcontrib><creatorcontrib>Hsieh, Chih-Cheng</creatorcontrib><creatorcontrib>Tang, Kea-Tiong</creatorcontrib><creatorcontrib>Chang, Meng-Fan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Ping-Chun</au><au>Su, Jian-Wei</au><au>Chung, Yen-Lin</au><au>Hong, Li-Yang</au><au>Ren, Jin-Sheng</au><au>Chang, Fu-Chun</au><au>Wu, Yuan</au><au>Chen, Ho-Yu</au><au>Lin, Chen-Hsun</au><au>Hsiao, Hsu-Ming</au><au>Li, Sih-Han</au><au>Sheu, Shyh-Shyuan</au><au>Chang, Shih-Chieh</au><au>Lo, Wei-Chung</au><au>Wu, Chih-I</au><au>Lo, Chung-Chuan</au><au>Liu, Ren-Shuo</au><au>Hsieh, Chih-Cheng</au><au>Tang, Kea-Tiong</au><au>Chang, Meng-Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An 8b-Precision 6T SRAM Computing-in-Memory Macro Using Time-Domain Incremental Accumulation for AI Edge Chips</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>59</volume><issue>7</issue><spage>2297</spage><epage>2309</epage><pages>2297-2309</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This article presents a novel static random access memory computing-in-memory (SRAM-CIM) structure designed for high-precision multiply-and-accumulate (MAC) operations with high energy efficiency (EF), high readout accuracy, and short compute latency. The proposed device employs 1) a time-domain incremental-accumulation (TDIA) scheme to enable high-accumulation MAC operations while maintaining a large signal margin across MAC values (MACVs), 2) a dynamic differential-reference (D2REF) scheme based on software-hardware co-design to reduce read energy consumption, and 3) a low-dMACV-aware recursive time-to-digital converter (LMAR-TDC) for implementation with the D2REF scheme to further suppress readout energy consumption. A 28 nm 1 Mb SRAM-CIM macro fabricated using foundry-provided compact 6T-SRAM cells achieved EF of 39.31 TOPS/W and compute latency of 6.6 ns for 8b-MAC operations with 64 accumulations per cycle and near-full output precision (22b).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2023.3343669</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9689-1236</orcidid><orcidid>https://orcid.org/0000-0003-4070-5059</orcidid><orcidid>https://orcid.org/0000-0002-5311-4955</orcidid><orcidid>https://orcid.org/0000-0001-7566-8185</orcidid><orcidid>https://orcid.org/0000-0001-6905-6350</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2024-07, Vol.59 (7), p.2297-2309
issn 0018-9200
1558-173X
language eng
recordid cdi_proquest_journals_3073305602
source IEEE Electronic Library (IEL)
subjects Accumulation
Artificial intelligence
Artificial intelligence (AI)
Co-design
Computation
computing-in-memory (CIM)
Edge AI
Energy consumption
In-memory computing
inference
Inference mechanisms
multiply-and-accumulate (MAC)
SRAM cells
Static random access memory
static random access memory (SRAM)
Time domain analysis
title An 8b-Precision 6T SRAM Computing-in-Memory Macro Using Time-Domain Incremental Accumulation for AI Edge Chips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%208b-Precision%206T%20SRAM%20Computing-in-Memory%20Macro%20Using%20Time-Domain%20Incremental%20Accumulation%20for%20AI%20Edge%20Chips&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Wu,%20Ping-Chun&rft.date=2024-07-01&rft.volume=59&rft.issue=7&rft.spage=2297&rft.epage=2309&rft.pages=2297-2309&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2023.3343669&rft_dat=%3Cproquest_RIE%3E3073305602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073305602&rft_id=info:pmid/&rft_ieee_id=10376238&rfr_iscdi=true