Research on Unfolding Inner Wall Views of Threaded Pipes

This article proposes a research method for the unfolding of the inner wall view of threaded pipes based on convolutional neural networks (CNNs). First, an industrial endoscope is used to capture the inner wall view of the threaded pipe. Then, a relationship between the lens position and the imaging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-07, Vol.24 (13), p.21669-21678
Hauptverfasser: Jiang, Kuosheng, Ji, Mingjin, Chang, Yasheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21678
container_issue 13
container_start_page 21669
container_title IEEE sensors journal
container_volume 24
creator Jiang, Kuosheng
Ji, Mingjin
Chang, Yasheng
description This article proposes a research method for the unfolding of the inner wall view of threaded pipes based on convolutional neural networks (CNNs). First, an industrial endoscope is used to capture the inner wall view of the threaded pipe. Then, a relationship between the lens position and the imaging of the inner wall view is established. An image correction method based on perspective transformation theory is proposed to correct the distortions present in the inner wall view. Finally, an improved image radial unwrapping algorithm is presented, which combines CNNs with image registration. The algorithm is extended based on the VoxelMorph framework and performs radial stretching unwrapping of the images to obtain the planar unfolded view of the threaded pipe's inner wall. Through the experimental analysis, the proposed algorithm is compared with traditional scale-invariant feature transform (SIFT) and speeded-up robust features (SURF) algorithms. The algorithm shows advantages in terms of root-mean-square error (RMSE) and structural similarity index measure (SSIM). The RMSE value is reduced by 0.09, and the SSIM value is improved by 0.24. This method is suitable for the detection of the inner wall of threaded pipes with diameters ranging from 5 to 10 cm, and it demonstrates good unfolding results.
doi_str_mv 10.1109/JSEN.2024.3399238
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3073299063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10535122</ieee_id><sourcerecordid>3073299063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-ea44a3a030d541d7acb8ee0b8152589763e8c6aeaa40284b8c4fe4f7e1d78e103</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFOGXvs2FmiikdRBQhaYGe5yYSmCkmxWyH-nkTtgtXcxbl3pMPYuYCREJBdPbzePI4kSDVCzDKJ9oANhNY2EUbZwz4jJArNxzE7iXEFIDKjzYDZF4rkQ77kbcPnTdnWRdV88knTUODvvq75W0U_kbclny0D-YIK_lytKZ6yo9LXkc72d8jmtzez8X0yfbqbjK-nSS5VuknIK-XRA0KhlSiMzxeWCBZWaKltZlIkm6eevFcgrVrYXJWkSkMda0kADtnlbncd2u8txY1btdvQdC8dgkGZZZBiR4kdlYc2xkClW4fqy4dfJ8D1glwvyPWC3F5Q17nYdSoi-sdr1EJK_APZwmBu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073299063</pqid></control><display><type>article</type><title>Research on Unfolding Inner Wall Views of Threaded Pipes</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Kuosheng ; Ji, Mingjin ; Chang, Yasheng</creator><creatorcontrib>Jiang, Kuosheng ; Ji, Mingjin ; Chang, Yasheng</creatorcontrib><description>This article proposes a research method for the unfolding of the inner wall view of threaded pipes based on convolutional neural networks (CNNs). First, an industrial endoscope is used to capture the inner wall view of the threaded pipe. Then, a relationship between the lens position and the imaging of the inner wall view is established. An image correction method based on perspective transformation theory is proposed to correct the distortions present in the inner wall view. Finally, an improved image radial unwrapping algorithm is presented, which combines CNNs with image registration. The algorithm is extended based on the VoxelMorph framework and performs radial stretching unwrapping of the images to obtain the planar unfolded view of the threaded pipe's inner wall. Through the experimental analysis, the proposed algorithm is compared with traditional scale-invariant feature transform (SIFT) and speeded-up robust features (SURF) algorithms. The algorithm shows advantages in terms of root-mean-square error (RMSE) and structural similarity index measure (SSIM). The RMSE value is reduced by 0.09, and the SSIM value is improved by 0.24. This method is suitable for the detection of the inner wall of threaded pipes with diameters ranging from 5 to 10 cm, and it demonstrates good unfolding results.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3399238</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Convolutional neural networks (CNNs) ; Distortion ; Endoscopes ; Error analysis ; Image registration ; image unfolding ; Imaging ; Instruction sets ; Lenses ; perspective transformation correction matrix ; Pipes ; Root-mean-square errors ; Sensors ; Testing</subject><ispartof>IEEE sensors journal, 2024-07, Vol.24 (13), p.21669-21678</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-ea44a3a030d541d7acb8ee0b8152589763e8c6aeaa40284b8c4fe4f7e1d78e103</cites><orcidid>0000-0002-2420-437X ; 0000-0003-0300-1976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10535122$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10535122$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang, Kuosheng</creatorcontrib><creatorcontrib>Ji, Mingjin</creatorcontrib><creatorcontrib>Chang, Yasheng</creatorcontrib><title>Research on Unfolding Inner Wall Views of Threaded Pipes</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This article proposes a research method for the unfolding of the inner wall view of threaded pipes based on convolutional neural networks (CNNs). First, an industrial endoscope is used to capture the inner wall view of the threaded pipe. Then, a relationship between the lens position and the imaging of the inner wall view is established. An image correction method based on perspective transformation theory is proposed to correct the distortions present in the inner wall view. Finally, an improved image radial unwrapping algorithm is presented, which combines CNNs with image registration. The algorithm is extended based on the VoxelMorph framework and performs radial stretching unwrapping of the images to obtain the planar unfolded view of the threaded pipe's inner wall. Through the experimental analysis, the proposed algorithm is compared with traditional scale-invariant feature transform (SIFT) and speeded-up robust features (SURF) algorithms. The algorithm shows advantages in terms of root-mean-square error (RMSE) and structural similarity index measure (SSIM). The RMSE value is reduced by 0.09, and the SSIM value is improved by 0.24. This method is suitable for the detection of the inner wall of threaded pipes with diameters ranging from 5 to 10 cm, and it demonstrates good unfolding results.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolutional neural networks (CNNs)</subject><subject>Distortion</subject><subject>Endoscopes</subject><subject>Error analysis</subject><subject>Image registration</subject><subject>image unfolding</subject><subject>Imaging</subject><subject>Instruction sets</subject><subject>Lenses</subject><subject>perspective transformation correction matrix</subject><subject>Pipes</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>Testing</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFOGXvs2FmiikdRBQhaYGe5yYSmCkmxWyH-nkTtgtXcxbl3pMPYuYCREJBdPbzePI4kSDVCzDKJ9oANhNY2EUbZwz4jJArNxzE7iXEFIDKjzYDZF4rkQ77kbcPnTdnWRdV88knTUODvvq75W0U_kbclny0D-YIK_lytKZ6yo9LXkc72d8jmtzez8X0yfbqbjK-nSS5VuknIK-XRA0KhlSiMzxeWCBZWaKltZlIkm6eevFcgrVrYXJWkSkMda0kADtnlbncd2u8txY1btdvQdC8dgkGZZZBiR4kdlYc2xkClW4fqy4dfJ8D1glwvyPWC3F5Q17nYdSoi-sdr1EJK_APZwmBu</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Jiang, Kuosheng</creator><creator>Ji, Mingjin</creator><creator>Chang, Yasheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2420-437X</orcidid><orcidid>https://orcid.org/0000-0003-0300-1976</orcidid></search><sort><creationdate>20240701</creationdate><title>Research on Unfolding Inner Wall Views of Threaded Pipes</title><author>Jiang, Kuosheng ; Ji, Mingjin ; Chang, Yasheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-ea44a3a030d541d7acb8ee0b8152589763e8c6aeaa40284b8c4fe4f7e1d78e103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolutional neural networks (CNNs)</topic><topic>Distortion</topic><topic>Endoscopes</topic><topic>Error analysis</topic><topic>Image registration</topic><topic>image unfolding</topic><topic>Imaging</topic><topic>Instruction sets</topic><topic>Lenses</topic><topic>perspective transformation correction matrix</topic><topic>Pipes</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Kuosheng</creatorcontrib><creatorcontrib>Ji, Mingjin</creatorcontrib><creatorcontrib>Chang, Yasheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Kuosheng</au><au>Ji, Mingjin</au><au>Chang, Yasheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Unfolding Inner Wall Views of Threaded Pipes</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>24</volume><issue>13</issue><spage>21669</spage><epage>21678</epage><pages>21669-21678</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This article proposes a research method for the unfolding of the inner wall view of threaded pipes based on convolutional neural networks (CNNs). First, an industrial endoscope is used to capture the inner wall view of the threaded pipe. Then, a relationship between the lens position and the imaging of the inner wall view is established. An image correction method based on perspective transformation theory is proposed to correct the distortions present in the inner wall view. Finally, an improved image radial unwrapping algorithm is presented, which combines CNNs with image registration. The algorithm is extended based on the VoxelMorph framework and performs radial stretching unwrapping of the images to obtain the planar unfolded view of the threaded pipe's inner wall. Through the experimental analysis, the proposed algorithm is compared with traditional scale-invariant feature transform (SIFT) and speeded-up robust features (SURF) algorithms. The algorithm shows advantages in terms of root-mean-square error (RMSE) and structural similarity index measure (SSIM). The RMSE value is reduced by 0.09, and the SSIM value is improved by 0.24. This method is suitable for the detection of the inner wall of threaded pipes with diameters ranging from 5 to 10 cm, and it demonstrates good unfolding results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3399238</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2420-437X</orcidid><orcidid>https://orcid.org/0000-0003-0300-1976</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-07, Vol.24 (13), p.21669-21678
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_3073299063
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Convolutional neural networks (CNNs)
Distortion
Endoscopes
Error analysis
Image registration
image unfolding
Imaging
Instruction sets
Lenses
perspective transformation correction matrix
Pipes
Root-mean-square errors
Sensors
Testing
title Research on Unfolding Inner Wall Views of Threaded Pipes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Unfolding%20Inner%20Wall%20Views%20of%20Threaded%20Pipes&rft.jtitle=IEEE%20sensors%20journal&rft.au=Jiang,%20Kuosheng&rft.date=2024-07-01&rft.volume=24&rft.issue=13&rft.spage=21669&rft.epage=21678&rft.pages=21669-21678&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3399238&rft_dat=%3Cproquest_RIE%3E3073299063%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073299063&rft_id=info:pmid/&rft_ieee_id=10535122&rfr_iscdi=true