Memory cutting and optimization of shearer based on K-GRU neural network

Objective Aiming at the inaccurate memory cutting and the low degree of automation of shearer, Methods This paper proposed a shearer memory cutting algorithm based on K-GRU neural network.This algorithm was more suitable for processing long-time sequence data.Combining the algorithm with the memory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:河南理工大学学报. 自然科学版 2024-01, Vol.43 (1), p.96
Hauptverfasser: An, Weipeng, Yan, Penghao, Zhang, Wenbo, Sun, Xuxu
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 96
container_title 河南理工大学学报. 自然科学版
container_volume 43
creator An, Weipeng
Yan, Penghao
Zhang, Wenbo
Sun, Xuxu
description Objective Aiming at the inaccurate memory cutting and the low degree of automation of shearer, Methods This paper proposed a shearer memory cutting algorithm based on K-GRU neural network.This algorithm was more suitable for processing long-time sequence data.Combining the algorithm with the memory cutting of shearer can reduce the damage of the drum during the coal mining process and protect the safety of workers' lives.The algorithm introduced the proportional factor K at the input end of the deep gated recurrent unit(GRU),and used the proportional factor K to show the importance of data at different times and to strengthen the memory of the model for long-time sequence data,thereby improving the accuracy of memory cutting.In the model training stage,the random search algorithm(RS)was used to optimize the hyperparameter selection of the deep K-GRU neural network to speed up the training speed of the model. Results In the experiment,Python was used to complete the construction of the K-GRU model and the opti
doi_str_mv 10.16186/j.cnki.1673-9787.2021090055
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3073269668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073269668</sourcerecordid><originalsourceid>FETCH-proquest_journals_30732696683</originalsourceid><addsrcrecordid>eNqNir0OgjAAhDtoIlHeoYmuYEtDgdmoJMbF6EwKFi0_LbYlRp_eDsbZ3PDl7jsAVhiFmOKUrpuwkq1wJSFBlqRJGKEIowyhOJ4A7zfPgG-MKBF2IQRFHsiPvFf6BavRWiFvkMkrVIMVvXgzK5SEqobmzpnmGpbMcGclPAT70wVKPmrWOdin0u0CTGvWGe5_OQfL3fa8yYNBq8fIjS0aNWrpVEFQQiKaUZqS_14fVMtEYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073269668</pqid></control><display><type>article</type><title>Memory cutting and optimization of shearer based on K-GRU neural network</title><source>Directory of Open Access Journals</source><creator>An, Weipeng ; Yan, Penghao ; Zhang, Wenbo ; Sun, Xuxu</creator><creatorcontrib>An, Weipeng ; Yan, Penghao ; Zhang, Wenbo ; Sun, Xuxu</creatorcontrib><description>Objective Aiming at the inaccurate memory cutting and the low degree of automation of shearer, Methods This paper proposed a shearer memory cutting algorithm based on K-GRU neural network.This algorithm was more suitable for processing long-time sequence data.Combining the algorithm with the memory cutting of shearer can reduce the damage of the drum during the coal mining process and protect the safety of workers' lives.The algorithm introduced the proportional factor K at the input end of the deep gated recurrent unit(GRU),and used the proportional factor K to show the importance of data at different times and to strengthen the memory of the model for long-time sequence data,thereby improving the accuracy of memory cutting.In the model training stage,the random search algorithm(RS)was used to optimize the hyperparameter selection of the deep K-GRU neural network to speed up the training speed of the model. Results In the experiment,Python was used to complete the construction of the K-GRU model and the opti</description><identifier>ISSN: 1673-9787</identifier><identifier>DOI: 10.16186/j.cnki.1673-9787.2021090055</identifier><language>chi</language><publisher>Jiaozuo: Henan Polytechnic University</publisher><subject>Accuracy ; Algorithms ; Coal mining ; Cutting ; Neural networks ; Optimization ; Search algorithms</subject><ispartof>河南理工大学学报. 自然科学版, 2024-01, Vol.43 (1), p.96</ispartof><rights>Copyright Henan Polytechnic University 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>An, Weipeng</creatorcontrib><creatorcontrib>Yan, Penghao</creatorcontrib><creatorcontrib>Zhang, Wenbo</creatorcontrib><creatorcontrib>Sun, Xuxu</creatorcontrib><title>Memory cutting and optimization of shearer based on K-GRU neural network</title><title>河南理工大学学报. 自然科学版</title><description>Objective Aiming at the inaccurate memory cutting and the low degree of automation of shearer, Methods This paper proposed a shearer memory cutting algorithm based on K-GRU neural network.This algorithm was more suitable for processing long-time sequence data.Combining the algorithm with the memory cutting of shearer can reduce the damage of the drum during the coal mining process and protect the safety of workers' lives.The algorithm introduced the proportional factor K at the input end of the deep gated recurrent unit(GRU),and used the proportional factor K to show the importance of data at different times and to strengthen the memory of the model for long-time sequence data,thereby improving the accuracy of memory cutting.In the model training stage,the random search algorithm(RS)was used to optimize the hyperparameter selection of the deep K-GRU neural network to speed up the training speed of the model. Results In the experiment,Python was used to complete the construction of the K-GRU model and the opti</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Coal mining</subject><subject>Cutting</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Search algorithms</subject><issn>1673-9787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNir0OgjAAhDtoIlHeoYmuYEtDgdmoJMbF6EwKFi0_LbYlRp_eDsbZ3PDl7jsAVhiFmOKUrpuwkq1wJSFBlqRJGKEIowyhOJ4A7zfPgG-MKBF2IQRFHsiPvFf6BavRWiFvkMkrVIMVvXgzK5SEqobmzpnmGpbMcGclPAT70wVKPmrWOdin0u0CTGvWGe5_OQfL3fa8yYNBq8fIjS0aNWrpVEFQQiKaUZqS_14fVMtEYA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>An, Weipeng</creator><creator>Yan, Penghao</creator><creator>Zhang, Wenbo</creator><creator>Sun, Xuxu</creator><general>Henan Polytechnic University</general><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240101</creationdate><title>Memory cutting and optimization of shearer based on K-GRU neural network</title><author>An, Weipeng ; Yan, Penghao ; Zhang, Wenbo ; Sun, Xuxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30732696683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Coal mining</topic><topic>Cutting</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Search algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>An, Weipeng</creatorcontrib><creatorcontrib>Yan, Penghao</creatorcontrib><creatorcontrib>Zhang, Wenbo</creatorcontrib><creatorcontrib>Sun, Xuxu</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>河南理工大学学报. 自然科学版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Weipeng</au><au>Yan, Penghao</au><au>Zhang, Wenbo</au><au>Sun, Xuxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory cutting and optimization of shearer based on K-GRU neural network</atitle><jtitle>河南理工大学学报. 自然科学版</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>43</volume><issue>1</issue><spage>96</spage><pages>96-</pages><issn>1673-9787</issn><abstract>Objective Aiming at the inaccurate memory cutting and the low degree of automation of shearer, Methods This paper proposed a shearer memory cutting algorithm based on K-GRU neural network.This algorithm was more suitable for processing long-time sequence data.Combining the algorithm with the memory cutting of shearer can reduce the damage of the drum during the coal mining process and protect the safety of workers' lives.The algorithm introduced the proportional factor K at the input end of the deep gated recurrent unit(GRU),and used the proportional factor K to show the importance of data at different times and to strengthen the memory of the model for long-time sequence data,thereby improving the accuracy of memory cutting.In the model training stage,the random search algorithm(RS)was used to optimize the hyperparameter selection of the deep K-GRU neural network to speed up the training speed of the model. Results In the experiment,Python was used to complete the construction of the K-GRU model and the opti</abstract><cop>Jiaozuo</cop><pub>Henan Polytechnic University</pub><doi>10.16186/j.cnki.1673-9787.2021090055</doi></addata></record>
fulltext fulltext
identifier ISSN: 1673-9787
ispartof 河南理工大学学报. 自然科学版, 2024-01, Vol.43 (1), p.96
issn 1673-9787
language chi
recordid cdi_proquest_journals_3073269668
source Directory of Open Access Journals
subjects Accuracy
Algorithms
Coal mining
Cutting
Neural networks
Optimization
Search algorithms
title Memory cutting and optimization of shearer based on K-GRU neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory%20cutting%20and%20optimization%20of%20shearer%20based%20on%20K-GRU%20neural%20network&rft.jtitle=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5.%20%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88&rft.au=An,%20Weipeng&rft.date=2024-01-01&rft.volume=43&rft.issue=1&rft.spage=96&rft.pages=96-&rft.issn=1673-9787&rft_id=info:doi/10.16186/j.cnki.1673-9787.2021090055&rft_dat=%3Cproquest%3E3073269668%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073269668&rft_id=info:pmid/&rfr_iscdi=true