Memory cutting and optimization of shearer based on K-GRU neural network
Objective Aiming at the inaccurate memory cutting and the low degree of automation of shearer, Methods This paper proposed a shearer memory cutting algorithm based on K-GRU neural network.This algorithm was more suitable for processing long-time sequence data.Combining the algorithm with the memory...
Gespeichert in:
Veröffentlicht in: | 河南理工大学学报. 自然科学版 2024-01, Vol.43 (1), p.96 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 96 |
container_title | 河南理工大学学报. 自然科学版 |
container_volume | 43 |
creator | An, Weipeng Yan, Penghao Zhang, Wenbo Sun, Xuxu |
description | Objective Aiming at the inaccurate memory cutting and the low degree of automation of shearer, Methods This paper proposed a shearer memory cutting algorithm based on K-GRU neural network.This algorithm was more suitable for processing long-time sequence data.Combining the algorithm with the memory cutting of shearer can reduce the damage of the drum during the coal mining process and protect the safety of workers' lives.The algorithm introduced the proportional factor K at the input end of the deep gated recurrent unit(GRU),and used the proportional factor K to show the importance of data at different times and to strengthen the memory of the model for long-time sequence data,thereby improving the accuracy of memory cutting.In the model training stage,the random search algorithm(RS)was used to optimize the hyperparameter selection of the deep K-GRU neural network to speed up the training speed of the model. Results In the experiment,Python was used to complete the construction of the K-GRU model and the opti |
doi_str_mv | 10.16186/j.cnki.1673-9787.2021090055 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3073269668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073269668</sourcerecordid><originalsourceid>FETCH-proquest_journals_30732696683</originalsourceid><addsrcrecordid>eNqNir0OgjAAhDtoIlHeoYmuYEtDgdmoJMbF6EwKFi0_LbYlRp_eDsbZ3PDl7jsAVhiFmOKUrpuwkq1wJSFBlqRJGKEIowyhOJ4A7zfPgG-MKBF2IQRFHsiPvFf6BavRWiFvkMkrVIMVvXgzK5SEqobmzpnmGpbMcGclPAT70wVKPmrWOdin0u0CTGvWGe5_OQfL3fa8yYNBq8fIjS0aNWrpVEFQQiKaUZqS_14fVMtEYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073269668</pqid></control><display><type>article</type><title>Memory cutting and optimization of shearer based on K-GRU neural network</title><source>Directory of Open Access Journals</source><creator>An, Weipeng ; Yan, Penghao ; Zhang, Wenbo ; Sun, Xuxu</creator><creatorcontrib>An, Weipeng ; Yan, Penghao ; Zhang, Wenbo ; Sun, Xuxu</creatorcontrib><description>Objective Aiming at the inaccurate memory cutting and the low degree of automation of shearer, Methods This paper proposed a shearer memory cutting algorithm based on K-GRU neural network.This algorithm was more suitable for processing long-time sequence data.Combining the algorithm with the memory cutting of shearer can reduce the damage of the drum during the coal mining process and protect the safety of workers' lives.The algorithm introduced the proportional factor K at the input end of the deep gated recurrent unit(GRU),and used the proportional factor K to show the importance of data at different times and to strengthen the memory of the model for long-time sequence data,thereby improving the accuracy of memory cutting.In the model training stage,the random search algorithm(RS)was used to optimize the hyperparameter selection of the deep K-GRU neural network to speed up the training speed of the model. Results In the experiment,Python was used to complete the construction of the K-GRU model and the opti</description><identifier>ISSN: 1673-9787</identifier><identifier>DOI: 10.16186/j.cnki.1673-9787.2021090055</identifier><language>chi</language><publisher>Jiaozuo: Henan Polytechnic University</publisher><subject>Accuracy ; Algorithms ; Coal mining ; Cutting ; Neural networks ; Optimization ; Search algorithms</subject><ispartof>河南理工大学学报. 自然科学版, 2024-01, Vol.43 (1), p.96</ispartof><rights>Copyright Henan Polytechnic University 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>An, Weipeng</creatorcontrib><creatorcontrib>Yan, Penghao</creatorcontrib><creatorcontrib>Zhang, Wenbo</creatorcontrib><creatorcontrib>Sun, Xuxu</creatorcontrib><title>Memory cutting and optimization of shearer based on K-GRU neural network</title><title>河南理工大学学报. 自然科学版</title><description>Objective Aiming at the inaccurate memory cutting and the low degree of automation of shearer, Methods This paper proposed a shearer memory cutting algorithm based on K-GRU neural network.This algorithm was more suitable for processing long-time sequence data.Combining the algorithm with the memory cutting of shearer can reduce the damage of the drum during the coal mining process and protect the safety of workers' lives.The algorithm introduced the proportional factor K at the input end of the deep gated recurrent unit(GRU),and used the proportional factor K to show the importance of data at different times and to strengthen the memory of the model for long-time sequence data,thereby improving the accuracy of memory cutting.In the model training stage,the random search algorithm(RS)was used to optimize the hyperparameter selection of the deep K-GRU neural network to speed up the training speed of the model. Results In the experiment,Python was used to complete the construction of the K-GRU model and the opti</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Coal mining</subject><subject>Cutting</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Search algorithms</subject><issn>1673-9787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNir0OgjAAhDtoIlHeoYmuYEtDgdmoJMbF6EwKFi0_LbYlRp_eDsbZ3PDl7jsAVhiFmOKUrpuwkq1wJSFBlqRJGKEIowyhOJ4A7zfPgG-MKBF2IQRFHsiPvFf6BavRWiFvkMkrVIMVvXgzK5SEqobmzpnmGpbMcGclPAT70wVKPmrWOdin0u0CTGvWGe5_OQfL3fa8yYNBq8fIjS0aNWrpVEFQQiKaUZqS_14fVMtEYA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>An, Weipeng</creator><creator>Yan, Penghao</creator><creator>Zhang, Wenbo</creator><creator>Sun, Xuxu</creator><general>Henan Polytechnic University</general><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240101</creationdate><title>Memory cutting and optimization of shearer based on K-GRU neural network</title><author>An, Weipeng ; Yan, Penghao ; Zhang, Wenbo ; Sun, Xuxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30732696683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Coal mining</topic><topic>Cutting</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Search algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>An, Weipeng</creatorcontrib><creatorcontrib>Yan, Penghao</creatorcontrib><creatorcontrib>Zhang, Wenbo</creatorcontrib><creatorcontrib>Sun, Xuxu</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>河南理工大学学报. 自然科学版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Weipeng</au><au>Yan, Penghao</au><au>Zhang, Wenbo</au><au>Sun, Xuxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory cutting and optimization of shearer based on K-GRU neural network</atitle><jtitle>河南理工大学学报. 自然科学版</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>43</volume><issue>1</issue><spage>96</spage><pages>96-</pages><issn>1673-9787</issn><abstract>Objective Aiming at the inaccurate memory cutting and the low degree of automation of shearer, Methods This paper proposed a shearer memory cutting algorithm based on K-GRU neural network.This algorithm was more suitable for processing long-time sequence data.Combining the algorithm with the memory cutting of shearer can reduce the damage of the drum during the coal mining process and protect the safety of workers' lives.The algorithm introduced the proportional factor K at the input end of the deep gated recurrent unit(GRU),and used the proportional factor K to show the importance of data at different times and to strengthen the memory of the model for long-time sequence data,thereby improving the accuracy of memory cutting.In the model training stage,the random search algorithm(RS)was used to optimize the hyperparameter selection of the deep K-GRU neural network to speed up the training speed of the model. Results In the experiment,Python was used to complete the construction of the K-GRU model and the opti</abstract><cop>Jiaozuo</cop><pub>Henan Polytechnic University</pub><doi>10.16186/j.cnki.1673-9787.2021090055</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1673-9787 |
ispartof | 河南理工大学学报. 自然科学版, 2024-01, Vol.43 (1), p.96 |
issn | 1673-9787 |
language | chi |
recordid | cdi_proquest_journals_3073269668 |
source | Directory of Open Access Journals |
subjects | Accuracy Algorithms Coal mining Cutting Neural networks Optimization Search algorithms |
title | Memory cutting and optimization of shearer based on K-GRU neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory%20cutting%20and%20optimization%20of%20shearer%20based%20on%20K-GRU%20neural%20network&rft.jtitle=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5.%20%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88&rft.au=An,%20Weipeng&rft.date=2024-01-01&rft.volume=43&rft.issue=1&rft.spage=96&rft.pages=96-&rft.issn=1673-9787&rft_id=info:doi/10.16186/j.cnki.1673-9787.2021090055&rft_dat=%3Cproquest%3E3073269668%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073269668&rft_id=info:pmid/&rfr_iscdi=true |