External and internal ignition of a hydrogen-air gas mixture induced by a recombiner
During their initial development, passive autocatalytic hydrogen recombiners (PARs) were presumed to operate in a flameless mode. However, a series of independent experiments conducted in the 1990s observed hydrogen-air gas mixtures igniting as a result of PAR operation. This ignition was due to ove...
Gespeichert in:
Veröffentlicht in: | Atomic energy (New York, N.Y.) N.Y.), 2023-11, Vol.135 (1-2), p.97-106 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 1-2 |
container_start_page | 97 |
container_title | Atomic energy (New York, N.Y.) |
container_volume | 135 |
creator | Bezgodov, E. V. Pasyukov, S. D Nikiforov, M. V. Tarakanov, A. A. Popov, I. A. Moshkin, DL Davletchin, U. F. Simonenko, V. A. Kirillov, I. A. Kalyakin, S. G. Sedov, M. K. |
description | During their initial development, passive autocatalytic hydrogen recombiners (PARs) were presumed to operate in a flameless mode. However, a series of independent experiments conducted in the 1990s observed hydrogen-air gas mixtures igniting as a result of PAR operation. This ignition was due to overheating of the catalyst, leading to the thermal ignition of hydrogen-air mixtures (termed “internal ignition”). Additionally, individual particles may become detached from the catalyst substrate and swept up by the gas stream to subsequently ignite the gas mixture outside the recombiner housing, a phenomenon known as “external ignition.” This article delves into the experimental findings concerning two mechanisms of hydrogen-air mixture ignition. Direct evidence for recombiner-induced external ignition was captured using the Schlieren method. It was confirmed that the concentration limits for external ignition differ from those for internal ignition. In order to ensure nuclear power plant safety, the development of a testing methodology for the technology used in manufacturing catalysts is essential. |
doi_str_mv | 10.1007/s10512-024-01087-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3072938353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799324620</galeid><sourcerecordid>A799324620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-31516eb9da8faa7a593a6b813b9ffe53c05dde65fb85af152db5727f5c4be31e3</originalsourceid><addsrcrecordid>eNp9kctKxDAUhosoOF5ewFXBlYuMuTRNuxzEGwwI3rYhbU5qhplkTFqYeRufxSczYwVxI1mc5PB9hxP-LDsjeEowFpeRYE4owrRAmOBKILGXTQgXDFUU8_10xyVDBeXVYXYU4wJjXJd1Nclerzc9BKeWuXI6t-7nYTtne-td7k2uPj_etjr4DhxSNuSdivnKbvohQBL00ILOm-0OC9D6VWMdhJPswKhlhNOfepy93Fw_X92h-cPt_dVsjlpWsB4xwkkJTa1VZZQSitdMlU1FWFMbA5y1mGsNJTdNxZUhnOqGCyoMb4sGGAF2nJ2Pc9fBvw8Qe7nww-4HUTIsaM0qxlmipiPVqSVI64zvg2rT0bCyrXdgbOrPRF0zWpQUJ-Hij5CYHjZ9p4YY5f3T41-WjmwbfIwBjFwHu1JhKwmWu3DkGI5M4cjvcKRIEhulmGDXQfjd-x_rC9Cxkyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072938353</pqid></control><display><type>article</type><title>External and internal ignition of a hydrogen-air gas mixture induced by a recombiner</title><source>Springer Nature - Complete Springer Journals</source><creator>Bezgodov, E. V. ; Pasyukov, S. D ; Nikiforov, M. V. ; Tarakanov, A. A. ; Popov, I. A. ; Moshkin, DL ; Davletchin, U. F. ; Simonenko, V. A. ; Kirillov, I. A. ; Kalyakin, S. G. ; Sedov, M. K.</creator><creatorcontrib>Bezgodov, E. V. ; Pasyukov, S. D ; Nikiforov, M. V. ; Tarakanov, A. A. ; Popov, I. A. ; Moshkin, DL ; Davletchin, U. F. ; Simonenko, V. A. ; Kirillov, I. A. ; Kalyakin, S. G. ; Sedov, M. K.</creatorcontrib><description>During their initial development, passive autocatalytic hydrogen recombiners (PARs) were presumed to operate in a flameless mode. However, a series of independent experiments conducted in the 1990s observed hydrogen-air gas mixtures igniting as a result of PAR operation. This ignition was due to overheating of the catalyst, leading to the thermal ignition of hydrogen-air mixtures (termed “internal ignition”). Additionally, individual particles may become detached from the catalyst substrate and swept up by the gas stream to subsequently ignite the gas mixture outside the recombiner housing, a phenomenon known as “external ignition.” This article delves into the experimental findings concerning two mechanisms of hydrogen-air mixture ignition. Direct evidence for recombiner-induced external ignition was captured using the Schlieren method. It was confirmed that the concentration limits for external ignition differ from those for internal ignition. In order to ensure nuclear power plant safety, the development of a testing methodology for the technology used in manufacturing catalysts is essential.</description><identifier>ISSN: 1063-4258</identifier><identifier>EISSN: 1573-8205</identifier><identifier>DOI: 10.1007/s10512-024-01087-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Catalysts ; Gas mixtures ; Gas streams ; Hadrons ; Heavy Ions ; Hydrogen ; Ignition ; Nuclear accidents & safety ; Nuclear Chemistry ; Nuclear Energy ; Nuclear Physics ; Nuclear power plants ; Nuclear safety ; Overheating ; Physics ; Physics and Astronomy ; Substrates</subject><ispartof>Atomic energy (New York, N.Y.), 2023-11, Vol.135 (1-2), p.97-106</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-31516eb9da8faa7a593a6b813b9ffe53c05dde65fb85af152db5727f5c4be31e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10512-024-01087-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10512-024-01087-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bezgodov, E. V.</creatorcontrib><creatorcontrib>Pasyukov, S. D</creatorcontrib><creatorcontrib>Nikiforov, M. V.</creatorcontrib><creatorcontrib>Tarakanov, A. A.</creatorcontrib><creatorcontrib>Popov, I. A.</creatorcontrib><creatorcontrib>Moshkin, DL</creatorcontrib><creatorcontrib>Davletchin, U. F.</creatorcontrib><creatorcontrib>Simonenko, V. A.</creatorcontrib><creatorcontrib>Kirillov, I. A.</creatorcontrib><creatorcontrib>Kalyakin, S. G.</creatorcontrib><creatorcontrib>Sedov, M. K.</creatorcontrib><title>External and internal ignition of a hydrogen-air gas mixture induced by a recombiner</title><title>Atomic energy (New York, N.Y.)</title><addtitle>At Energy</addtitle><description>During their initial development, passive autocatalytic hydrogen recombiners (PARs) were presumed to operate in a flameless mode. However, a series of independent experiments conducted in the 1990s observed hydrogen-air gas mixtures igniting as a result of PAR operation. This ignition was due to overheating of the catalyst, leading to the thermal ignition of hydrogen-air mixtures (termed “internal ignition”). Additionally, individual particles may become detached from the catalyst substrate and swept up by the gas stream to subsequently ignite the gas mixture outside the recombiner housing, a phenomenon known as “external ignition.” This article delves into the experimental findings concerning two mechanisms of hydrogen-air mixture ignition. Direct evidence for recombiner-induced external ignition was captured using the Schlieren method. It was confirmed that the concentration limits for external ignition differ from those for internal ignition. In order to ensure nuclear power plant safety, the development of a testing methodology for the technology used in manufacturing catalysts is essential.</description><subject>Catalysts</subject><subject>Gas mixtures</subject><subject>Gas streams</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Hydrogen</subject><subject>Ignition</subject><subject>Nuclear accidents & safety</subject><subject>Nuclear Chemistry</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Nuclear power plants</subject><subject>Nuclear safety</subject><subject>Overheating</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Substrates</subject><issn>1063-4258</issn><issn>1573-8205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kctKxDAUhosoOF5ewFXBlYuMuTRNuxzEGwwI3rYhbU5qhplkTFqYeRufxSczYwVxI1mc5PB9hxP-LDsjeEowFpeRYE4owrRAmOBKILGXTQgXDFUU8_10xyVDBeXVYXYU4wJjXJd1Nclerzc9BKeWuXI6t-7nYTtne-td7k2uPj_etjr4DhxSNuSdivnKbvohQBL00ILOm-0OC9D6VWMdhJPswKhlhNOfepy93Fw_X92h-cPt_dVsjlpWsB4xwkkJTa1VZZQSitdMlU1FWFMbA5y1mGsNJTdNxZUhnOqGCyoMb4sGGAF2nJ2Pc9fBvw8Qe7nww-4HUTIsaM0qxlmipiPVqSVI64zvg2rT0bCyrXdgbOrPRF0zWpQUJ-Hij5CYHjZ9p4YY5f3T41-WjmwbfIwBjFwHu1JhKwmWu3DkGI5M4cjvcKRIEhulmGDXQfjd-x_rC9Cxkyk</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Bezgodov, E. V.</creator><creator>Pasyukov, S. D</creator><creator>Nikiforov, M. V.</creator><creator>Tarakanov, A. A.</creator><creator>Popov, I. A.</creator><creator>Moshkin, DL</creator><creator>Davletchin, U. F.</creator><creator>Simonenko, V. A.</creator><creator>Kirillov, I. A.</creator><creator>Kalyakin, S. G.</creator><creator>Sedov, M. K.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20231101</creationdate><title>External and internal ignition of a hydrogen-air gas mixture induced by a recombiner</title><author>Bezgodov, E. V. ; Pasyukov, S. D ; Nikiforov, M. V. ; Tarakanov, A. A. ; Popov, I. A. ; Moshkin, DL ; Davletchin, U. F. ; Simonenko, V. A. ; Kirillov, I. A. ; Kalyakin, S. G. ; Sedov, M. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-31516eb9da8faa7a593a6b813b9ffe53c05dde65fb85af152db5727f5c4be31e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Gas mixtures</topic><topic>Gas streams</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Hydrogen</topic><topic>Ignition</topic><topic>Nuclear accidents & safety</topic><topic>Nuclear Chemistry</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Nuclear power plants</topic><topic>Nuclear safety</topic><topic>Overheating</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezgodov, E. V.</creatorcontrib><creatorcontrib>Pasyukov, S. D</creatorcontrib><creatorcontrib>Nikiforov, M. V.</creatorcontrib><creatorcontrib>Tarakanov, A. A.</creatorcontrib><creatorcontrib>Popov, I. A.</creatorcontrib><creatorcontrib>Moshkin, DL</creatorcontrib><creatorcontrib>Davletchin, U. F.</creatorcontrib><creatorcontrib>Simonenko, V. A.</creatorcontrib><creatorcontrib>Kirillov, I. A.</creatorcontrib><creatorcontrib>Kalyakin, S. G.</creatorcontrib><creatorcontrib>Sedov, M. K.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Atomic energy (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezgodov, E. V.</au><au>Pasyukov, S. D</au><au>Nikiforov, M. V.</au><au>Tarakanov, A. A.</au><au>Popov, I. A.</au><au>Moshkin, DL</au><au>Davletchin, U. F.</au><au>Simonenko, V. A.</au><au>Kirillov, I. A.</au><au>Kalyakin, S. G.</au><au>Sedov, M. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>External and internal ignition of a hydrogen-air gas mixture induced by a recombiner</atitle><jtitle>Atomic energy (New York, N.Y.)</jtitle><stitle>At Energy</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>135</volume><issue>1-2</issue><spage>97</spage><epage>106</epage><pages>97-106</pages><issn>1063-4258</issn><eissn>1573-8205</eissn><abstract>During their initial development, passive autocatalytic hydrogen recombiners (PARs) were presumed to operate in a flameless mode. However, a series of independent experiments conducted in the 1990s observed hydrogen-air gas mixtures igniting as a result of PAR operation. This ignition was due to overheating of the catalyst, leading to the thermal ignition of hydrogen-air mixtures (termed “internal ignition”). Additionally, individual particles may become detached from the catalyst substrate and swept up by the gas stream to subsequently ignite the gas mixture outside the recombiner housing, a phenomenon known as “external ignition.” This article delves into the experimental findings concerning two mechanisms of hydrogen-air mixture ignition. Direct evidence for recombiner-induced external ignition was captured using the Schlieren method. It was confirmed that the concentration limits for external ignition differ from those for internal ignition. In order to ensure nuclear power plant safety, the development of a testing methodology for the technology used in manufacturing catalysts is essential.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10512-024-01087-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-4258 |
ispartof | Atomic energy (New York, N.Y.), 2023-11, Vol.135 (1-2), p.97-106 |
issn | 1063-4258 1573-8205 |
language | eng |
recordid | cdi_proquest_journals_3072938353 |
source | Springer Nature - Complete Springer Journals |
subjects | Catalysts Gas mixtures Gas streams Hadrons Heavy Ions Hydrogen Ignition Nuclear accidents & safety Nuclear Chemistry Nuclear Energy Nuclear Physics Nuclear power plants Nuclear safety Overheating Physics Physics and Astronomy Substrates |
title | External and internal ignition of a hydrogen-air gas mixture induced by a recombiner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=External%20and%20internal%20ignition%20of%20a%C2%A0hydrogen-air%20gas%20mixture%20induced%20by%20a%C2%A0recombiner&rft.jtitle=Atomic%20energy%20(New%20York,%20N.Y.)&rft.au=Bezgodov,%20E.%E2%80%AFV.&rft.date=2023-11-01&rft.volume=135&rft.issue=1-2&rft.spage=97&rft.epage=106&rft.pages=97-106&rft.issn=1063-4258&rft.eissn=1573-8205&rft_id=info:doi/10.1007/s10512-024-01087-7&rft_dat=%3Cgale_proqu%3EA799324620%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072938353&rft_id=info:pmid/&rft_galeid=A799324620&rfr_iscdi=true |