Conductive graphene-containing biocompatible films

In this work, we studied the preparation of graphene dispersions by liquid-phase ultrasound exfoliation in aqueous solutions, using amphiphilic stabilizers, such as Pluronic F108 (Plu) and polyvinylpyrrolidone (PVP), as well as in N-MP. The resulting dispersions were characterized by TEM, dynamic li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of materials science 2024-06, Vol.47 (3), p.132, Article 132
Hauptverfasser: Buinov, Alexander S, Kholkhoev, Bato Ch, Farion, Ivan A, Gapich, Dmitrii I, Kuznetsov, Vitalii A, Burdukovskii, Vitalii F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 132
container_title Bulletin of materials science
container_volume 47
creator Buinov, Alexander S
Kholkhoev, Bato Ch
Farion, Ivan A
Gapich, Dmitrii I
Kuznetsov, Vitalii A
Burdukovskii, Vitalii F
description In this work, we studied the preparation of graphene dispersions by liquid-phase ultrasound exfoliation in aqueous solutions, using amphiphilic stabilizers, such as Pluronic F108 (Plu) and polyvinylpyrrolidone (PVP), as well as in N-MP. The resulting dispersions were characterized by TEM, dynamic light scattering, UV spectroscopy. Optimal conditions for ultrasonic treatment of few-layer graphene dispersions were established, which make it possible to obtain stable concentrated graphene dispersions (1–4 layers) with lateral dimensions of 50–2000 nm. Based on the developed graphene dispersions, composite films with various polymer matrices (polylactide, collagen, chitosan), using graphene as nano-filler, were obtained. The presence of the latter provided electrical conductivity up to 0.9 S cm −1 , a change in electrical resistance during deformation with a strain sensitivity coefficient of 1.3–5.7, as well as an increase in breaking stress up to 97.1 ± 1.6 MPa and in elastic modulus up to 3.99 GPa. The designed films possess a wide variety of properties and are promising for use as flexible biosensors for biomechanical studies and electrically conductive matrices for tissue engineering.
doi_str_mv 10.1007/s12034-024-03261-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072928669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072928669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-e9b6c3b33440b5ff27b5e8e2d001b8118bcb097d81485c356850f13e155d76663</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPBU8RydJ06ZHWdQVFrzoOTRpWrO0SU1aF_-90Qp68jDMHN7XPIQuCVwTgPImEgosx0DTMFoQfDhCK6hKhsuiqI7_3KfoLMY9AKnynKwQ3XjXzHqy7ybrQj2-Gmew9m6qrbOuy5T12g9jPVnVm6y1_RDP0Ulb99Fc_Ow1erm_e95s8e7p4XFzu8OaAkzYVKrQTDGW56B429JScSMMbZK3EoQIpVVK1QiSC64ZLwSHljBDOG9S0IKt0dWiOwb_Nps4yb2fg0uWkkFJKyrSOwlFF5QOPsZgWjkGO9ThQxKQX93IpRuZupHf3chDIrGFFBPYdSb8Sv_D-gSMHGZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072928669</pqid></control><display><type>article</type><title>Conductive graphene-containing biocompatible films</title><source>Indian Academy of Sciences</source><source>Springer Nature - Complete Springer Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Buinov, Alexander S ; Kholkhoev, Bato Ch ; Farion, Ivan A ; Gapich, Dmitrii I ; Kuznetsov, Vitalii A ; Burdukovskii, Vitalii F</creator><creatorcontrib>Buinov, Alexander S ; Kholkhoev, Bato Ch ; Farion, Ivan A ; Gapich, Dmitrii I ; Kuznetsov, Vitalii A ; Burdukovskii, Vitalii F</creatorcontrib><description>In this work, we studied the preparation of graphene dispersions by liquid-phase ultrasound exfoliation in aqueous solutions, using amphiphilic stabilizers, such as Pluronic F108 (Plu) and polyvinylpyrrolidone (PVP), as well as in N-MP. The resulting dispersions were characterized by TEM, dynamic light scattering, UV spectroscopy. Optimal conditions for ultrasonic treatment of few-layer graphene dispersions were established, which make it possible to obtain stable concentrated graphene dispersions (1–4 layers) with lateral dimensions of 50–2000 nm. Based on the developed graphene dispersions, composite films with various polymer matrices (polylactide, collagen, chitosan), using graphene as nano-filler, were obtained. The presence of the latter provided electrical conductivity up to 0.9 S cm −1 , a change in electrical resistance during deformation with a strain sensitivity coefficient of 1.3–5.7, as well as an increase in breaking stress up to 97.1 ± 1.6 MPa and in elastic modulus up to 3.99 GPa. The designed films possess a wide variety of properties and are promising for use as flexible biosensors for biomechanical studies and electrically conductive matrices for tissue engineering.</description><identifier>ISSN: 0973-7669</identifier><identifier>ISSN: 0250-4707</identifier><identifier>EISSN: 0973-7669</identifier><identifier>DOI: 10.1007/s12034-024-03261-w</identifier><language>eng</language><publisher>Bangalore: Indian Academy of Sciences</publisher><subject>Acids ; Aqueous solutions ; Biocompatibility ; Biomechanical engineering ; Biomechanics ; Biosensors ; Cavitation ; Chemistry and Materials Science ; Chitosan ; Collagen ; Dispersions ; Electrical resistivity ; Engineering ; Graphene ; Liquid phases ; Materials Science ; Modulus of elasticity ; Photon correlation spectroscopy ; Polylactic acid ; Polymer films ; Polymer matrix composites ; Polymers ; Polyvinylpyrrolidone ; Solvents ; Strain sensitivity coefficient ; Temperature ; Tissue engineering ; Ultrasonic processing ; Vacuum distillation ; Ventilation</subject><ispartof>Bulletin of materials science, 2024-06, Vol.47 (3), p.132, Article 132</ispartof><rights>Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-e9b6c3b33440b5ff27b5e8e2d001b8118bcb097d81485c356850f13e155d76663</cites><orcidid>0000-0003-2723-6569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12034-024-03261-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12034-024-03261-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Buinov, Alexander S</creatorcontrib><creatorcontrib>Kholkhoev, Bato Ch</creatorcontrib><creatorcontrib>Farion, Ivan A</creatorcontrib><creatorcontrib>Gapich, Dmitrii I</creatorcontrib><creatorcontrib>Kuznetsov, Vitalii A</creatorcontrib><creatorcontrib>Burdukovskii, Vitalii F</creatorcontrib><title>Conductive graphene-containing biocompatible films</title><title>Bulletin of materials science</title><addtitle>Bull Mater Sci</addtitle><description>In this work, we studied the preparation of graphene dispersions by liquid-phase ultrasound exfoliation in aqueous solutions, using amphiphilic stabilizers, such as Pluronic F108 (Plu) and polyvinylpyrrolidone (PVP), as well as in N-MP. The resulting dispersions were characterized by TEM, dynamic light scattering, UV spectroscopy. Optimal conditions for ultrasonic treatment of few-layer graphene dispersions were established, which make it possible to obtain stable concentrated graphene dispersions (1–4 layers) with lateral dimensions of 50–2000 nm. Based on the developed graphene dispersions, composite films with various polymer matrices (polylactide, collagen, chitosan), using graphene as nano-filler, were obtained. The presence of the latter provided electrical conductivity up to 0.9 S cm −1 , a change in electrical resistance during deformation with a strain sensitivity coefficient of 1.3–5.7, as well as an increase in breaking stress up to 97.1 ± 1.6 MPa and in elastic modulus up to 3.99 GPa. The designed films possess a wide variety of properties and are promising for use as flexible biosensors for biomechanical studies and electrically conductive matrices for tissue engineering.</description><subject>Acids</subject><subject>Aqueous solutions</subject><subject>Biocompatibility</subject><subject>Biomechanical engineering</subject><subject>Biomechanics</subject><subject>Biosensors</subject><subject>Cavitation</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Collagen</subject><subject>Dispersions</subject><subject>Electrical resistivity</subject><subject>Engineering</subject><subject>Graphene</subject><subject>Liquid phases</subject><subject>Materials Science</subject><subject>Modulus of elasticity</subject><subject>Photon correlation spectroscopy</subject><subject>Polylactic acid</subject><subject>Polymer films</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polyvinylpyrrolidone</subject><subject>Solvents</subject><subject>Strain sensitivity coefficient</subject><subject>Temperature</subject><subject>Tissue engineering</subject><subject>Ultrasonic processing</subject><subject>Vacuum distillation</subject><subject>Ventilation</subject><issn>0973-7669</issn><issn>0250-4707</issn><issn>0973-7669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPBU8RydJ06ZHWdQVFrzoOTRpWrO0SU1aF_-90Qp68jDMHN7XPIQuCVwTgPImEgosx0DTMFoQfDhCK6hKhsuiqI7_3KfoLMY9AKnynKwQ3XjXzHqy7ybrQj2-Gmew9m6qrbOuy5T12g9jPVnVm6y1_RDP0Ulb99Fc_Ow1erm_e95s8e7p4XFzu8OaAkzYVKrQTDGW56B429JScSMMbZK3EoQIpVVK1QiSC64ZLwSHljBDOG9S0IKt0dWiOwb_Nps4yb2fg0uWkkFJKyrSOwlFF5QOPsZgWjkGO9ThQxKQX93IpRuZupHf3chDIrGFFBPYdSb8Sv_D-gSMHGZc</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Buinov, Alexander S</creator><creator>Kholkhoev, Bato Ch</creator><creator>Farion, Ivan A</creator><creator>Gapich, Dmitrii I</creator><creator>Kuznetsov, Vitalii A</creator><creator>Burdukovskii, Vitalii F</creator><general>Indian Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2723-6569</orcidid></search><sort><creationdate>20240627</creationdate><title>Conductive graphene-containing biocompatible films</title><author>Buinov, Alexander S ; Kholkhoev, Bato Ch ; Farion, Ivan A ; Gapich, Dmitrii I ; Kuznetsov, Vitalii A ; Burdukovskii, Vitalii F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-e9b6c3b33440b5ff27b5e8e2d001b8118bcb097d81485c356850f13e155d76663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Aqueous solutions</topic><topic>Biocompatibility</topic><topic>Biomechanical engineering</topic><topic>Biomechanics</topic><topic>Biosensors</topic><topic>Cavitation</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Collagen</topic><topic>Dispersions</topic><topic>Electrical resistivity</topic><topic>Engineering</topic><topic>Graphene</topic><topic>Liquid phases</topic><topic>Materials Science</topic><topic>Modulus of elasticity</topic><topic>Photon correlation spectroscopy</topic><topic>Polylactic acid</topic><topic>Polymer films</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polyvinylpyrrolidone</topic><topic>Solvents</topic><topic>Strain sensitivity coefficient</topic><topic>Temperature</topic><topic>Tissue engineering</topic><topic>Ultrasonic processing</topic><topic>Vacuum distillation</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buinov, Alexander S</creatorcontrib><creatorcontrib>Kholkhoev, Bato Ch</creatorcontrib><creatorcontrib>Farion, Ivan A</creatorcontrib><creatorcontrib>Gapich, Dmitrii I</creatorcontrib><creatorcontrib>Kuznetsov, Vitalii A</creatorcontrib><creatorcontrib>Burdukovskii, Vitalii F</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Bulletin of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buinov, Alexander S</au><au>Kholkhoev, Bato Ch</au><au>Farion, Ivan A</au><au>Gapich, Dmitrii I</au><au>Kuznetsov, Vitalii A</au><au>Burdukovskii, Vitalii F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive graphene-containing biocompatible films</atitle><jtitle>Bulletin of materials science</jtitle><stitle>Bull Mater Sci</stitle><date>2024-06-27</date><risdate>2024</risdate><volume>47</volume><issue>3</issue><spage>132</spage><pages>132-</pages><artnum>132</artnum><issn>0973-7669</issn><issn>0250-4707</issn><eissn>0973-7669</eissn><abstract>In this work, we studied the preparation of graphene dispersions by liquid-phase ultrasound exfoliation in aqueous solutions, using amphiphilic stabilizers, such as Pluronic F108 (Plu) and polyvinylpyrrolidone (PVP), as well as in N-MP. The resulting dispersions were characterized by TEM, dynamic light scattering, UV spectroscopy. Optimal conditions for ultrasonic treatment of few-layer graphene dispersions were established, which make it possible to obtain stable concentrated graphene dispersions (1–4 layers) with lateral dimensions of 50–2000 nm. Based on the developed graphene dispersions, composite films with various polymer matrices (polylactide, collagen, chitosan), using graphene as nano-filler, were obtained. The presence of the latter provided electrical conductivity up to 0.9 S cm −1 , a change in electrical resistance during deformation with a strain sensitivity coefficient of 1.3–5.7, as well as an increase in breaking stress up to 97.1 ± 1.6 MPa and in elastic modulus up to 3.99 GPa. The designed films possess a wide variety of properties and are promising for use as flexible biosensors for biomechanical studies and electrically conductive matrices for tissue engineering.</abstract><cop>Bangalore</cop><pub>Indian Academy of Sciences</pub><doi>10.1007/s12034-024-03261-w</doi><orcidid>https://orcid.org/0000-0003-2723-6569</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0973-7669
ispartof Bulletin of materials science, 2024-06, Vol.47 (3), p.132, Article 132
issn 0973-7669
0250-4707
0973-7669
language eng
recordid cdi_proquest_journals_3072928669
source Indian Academy of Sciences; Springer Nature - Complete Springer Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Acids
Aqueous solutions
Biocompatibility
Biomechanical engineering
Biomechanics
Biosensors
Cavitation
Chemistry and Materials Science
Chitosan
Collagen
Dispersions
Electrical resistivity
Engineering
Graphene
Liquid phases
Materials Science
Modulus of elasticity
Photon correlation spectroscopy
Polylactic acid
Polymer films
Polymer matrix composites
Polymers
Polyvinylpyrrolidone
Solvents
Strain sensitivity coefficient
Temperature
Tissue engineering
Ultrasonic processing
Vacuum distillation
Ventilation
title Conductive graphene-containing biocompatible films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20graphene-containing%20biocompatible%20films&rft.jtitle=Bulletin%20of%20materials%20science&rft.au=Buinov,%20Alexander%20S&rft.date=2024-06-27&rft.volume=47&rft.issue=3&rft.spage=132&rft.pages=132-&rft.artnum=132&rft.issn=0973-7669&rft.eissn=0973-7669&rft_id=info:doi/10.1007/s12034-024-03261-w&rft_dat=%3Cproquest_cross%3E3072928669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072928669&rft_id=info:pmid/&rfr_iscdi=true