Correlation of the L-mode density limit with edge collisionality

The "density limit" is one of the fundamental bounds on tokamak operating space, and is commonly estimated via the empirical Greenwald scaling. This limit has garnered renewed interest in recent years as it has become clear that ITER and many tokamak pilot plant concepts must operate near...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Maris, Andrew, Rea, Cristina, Pau, Alessandro, Hu, Wenhui, Xiao, Bingjia, Granetz, Robert, Marmar, Earl, the EUROfusion Tokamak Exploitation team, the Alcator C-Mod team, the ASDEX Upgrade team, the DIII-D team, the EAST team, the TCV team
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Maris, Andrew
Rea, Cristina
Pau, Alessandro
Hu, Wenhui
Xiao, Bingjia
Granetz, Robert
Marmar, Earl
the EUROfusion Tokamak Exploitation team
the Alcator C-Mod team
the ASDEX Upgrade team
the DIII-D team
the EAST team
the TCV team
description The "density limit" is one of the fundamental bounds on tokamak operating space, and is commonly estimated via the empirical Greenwald scaling. This limit has garnered renewed interest in recent years as it has become clear that ITER and many tokamak pilot plant concepts must operate near or above the widely-used Greenwald limit to achieve their objectives. Evidence has also grown that the Greenwald scaling - in its remarkable simplicity - may not capture the full complexity of the disruptive density limit. In this study, we assemble a multi-machine database to quantify the effectiveness of the Greenwald limit as a predictor of the L-mode density limit and identify alternative stability metrics. We find that a two-parameter dimensionless boundary in the plasma edge, \(\nu_{*\rm, edge}^{\rm limit} = 3.0 \beta_{T,{\rm edge}}^{-0.4}\), achieves significantly higher accuracy (true negative rate of 97.7% at a true positive rate of 95%) than the Greenwald limit (true negative rate 86.1% at a true positive rate of 95%) across a multi-machine dataset including metal- and carbon-wall tokamaks (AUG, C-Mod, DIII-D, and TCV). The collisionality boundary presented here can be applied for density limit avoidance in current devices and in ITER, where it can be measured and responded to in real time.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3072928261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072928261</sourcerecordid><originalsourceid>FETCH-proquest_journals_30729282613</originalsourceid><addsrcrecordid>eNqNyj0KwkAQQOFFEAyaOwxYB9ZZ82MnBMXC0j4EMzEbNhnd2SDe3hQewOoV71uoCI3ZJcUecaVikV5rjVmOaWoidSzZe3J1sDwCtxA6gmsycEPQ0Cg2fMDZwQZ429ABNQ-COztnZfa1m_dGLdvaCcW_rtX2fLqVl-Tp-TWRhKrnyc9WKqNzPGCB2c78p746izkq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072928261</pqid></control><display><type>article</type><title>Correlation of the L-mode density limit with edge collisionality</title><source>Free E- Journals</source><creator>Maris, Andrew ; Rea, Cristina ; Pau, Alessandro ; Hu, Wenhui ; Xiao, Bingjia ; Granetz, Robert ; Marmar, Earl ; the EUROfusion Tokamak Exploitation team ; the Alcator C-Mod team ; the ASDEX Upgrade team ; the DIII-D team ; the EAST team ; the TCV team</creator><creatorcontrib>Maris, Andrew ; Rea, Cristina ; Pau, Alessandro ; Hu, Wenhui ; Xiao, Bingjia ; Granetz, Robert ; Marmar, Earl ; the EUROfusion Tokamak Exploitation team ; the Alcator C-Mod team ; the ASDEX Upgrade team ; the DIII-D team ; the EAST team ; the TCV team</creatorcontrib><description>The "density limit" is one of the fundamental bounds on tokamak operating space, and is commonly estimated via the empirical Greenwald scaling. This limit has garnered renewed interest in recent years as it has become clear that ITER and many tokamak pilot plant concepts must operate near or above the widely-used Greenwald limit to achieve their objectives. Evidence has also grown that the Greenwald scaling - in its remarkable simplicity - may not capture the full complexity of the disruptive density limit. In this study, we assemble a multi-machine database to quantify the effectiveness of the Greenwald limit as a predictor of the L-mode density limit and identify alternative stability metrics. We find that a two-parameter dimensionless boundary in the plasma edge, \(\nu_{*\rm, edge}^{\rm limit} = 3.0 \beta_{T,{\rm edge}}^{-0.4}\), achieves significantly higher accuracy (true negative rate of 97.7% at a true positive rate of 95%) than the Greenwald limit (true negative rate 86.1% at a true positive rate of 95%) across a multi-machine dataset including metal- and carbon-wall tokamaks (AUG, C-Mod, DIII-D, and TCV). The collisionality boundary presented here can be applied for density limit avoidance in current devices and in ITER, where it can be measured and responded to in real time.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Density ; Nuclear power plants ; Parameter identification ; Tokamak devices</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Maris, Andrew</creatorcontrib><creatorcontrib>Rea, Cristina</creatorcontrib><creatorcontrib>Pau, Alessandro</creatorcontrib><creatorcontrib>Hu, Wenhui</creatorcontrib><creatorcontrib>Xiao, Bingjia</creatorcontrib><creatorcontrib>Granetz, Robert</creatorcontrib><creatorcontrib>Marmar, Earl</creatorcontrib><creatorcontrib>the EUROfusion Tokamak Exploitation team</creatorcontrib><creatorcontrib>the Alcator C-Mod team</creatorcontrib><creatorcontrib>the ASDEX Upgrade team</creatorcontrib><creatorcontrib>the DIII-D team</creatorcontrib><creatorcontrib>the EAST team</creatorcontrib><creatorcontrib>the TCV team</creatorcontrib><title>Correlation of the L-mode density limit with edge collisionality</title><title>arXiv.org</title><description>The "density limit" is one of the fundamental bounds on tokamak operating space, and is commonly estimated via the empirical Greenwald scaling. This limit has garnered renewed interest in recent years as it has become clear that ITER and many tokamak pilot plant concepts must operate near or above the widely-used Greenwald limit to achieve their objectives. Evidence has also grown that the Greenwald scaling - in its remarkable simplicity - may not capture the full complexity of the disruptive density limit. In this study, we assemble a multi-machine database to quantify the effectiveness of the Greenwald limit as a predictor of the L-mode density limit and identify alternative stability metrics. We find that a two-parameter dimensionless boundary in the plasma edge, \(\nu_{*\rm, edge}^{\rm limit} = 3.0 \beta_{T,{\rm edge}}^{-0.4}\), achieves significantly higher accuracy (true negative rate of 97.7% at a true positive rate of 95%) than the Greenwald limit (true negative rate 86.1% at a true positive rate of 95%) across a multi-machine dataset including metal- and carbon-wall tokamaks (AUG, C-Mod, DIII-D, and TCV). The collisionality boundary presented here can be applied for density limit avoidance in current devices and in ITER, where it can be measured and responded to in real time.</description><subject>Density</subject><subject>Nuclear power plants</subject><subject>Parameter identification</subject><subject>Tokamak devices</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyj0KwkAQQOFFEAyaOwxYB9ZZ82MnBMXC0j4EMzEbNhnd2SDe3hQewOoV71uoCI3ZJcUecaVikV5rjVmOaWoidSzZe3J1sDwCtxA6gmsycEPQ0Cg2fMDZwQZ429ABNQ-COztnZfa1m_dGLdvaCcW_rtX2fLqVl-Tp-TWRhKrnyc9WKqNzPGCB2c78p746izkq</recordid><startdate>20240626</startdate><enddate>20240626</enddate><creator>Maris, Andrew</creator><creator>Rea, Cristina</creator><creator>Pau, Alessandro</creator><creator>Hu, Wenhui</creator><creator>Xiao, Bingjia</creator><creator>Granetz, Robert</creator><creator>Marmar, Earl</creator><creator>the EUROfusion Tokamak Exploitation team</creator><creator>the Alcator C-Mod team</creator><creator>the ASDEX Upgrade team</creator><creator>the DIII-D team</creator><creator>the EAST team</creator><creator>the TCV team</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240626</creationdate><title>Correlation of the L-mode density limit with edge collisionality</title><author>Maris, Andrew ; Rea, Cristina ; Pau, Alessandro ; Hu, Wenhui ; Xiao, Bingjia ; Granetz, Robert ; Marmar, Earl ; the EUROfusion Tokamak Exploitation team ; the Alcator C-Mod team ; the ASDEX Upgrade team ; the DIII-D team ; the EAST team ; the TCV team</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30729282613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density</topic><topic>Nuclear power plants</topic><topic>Parameter identification</topic><topic>Tokamak devices</topic><toplevel>online_resources</toplevel><creatorcontrib>Maris, Andrew</creatorcontrib><creatorcontrib>Rea, Cristina</creatorcontrib><creatorcontrib>Pau, Alessandro</creatorcontrib><creatorcontrib>Hu, Wenhui</creatorcontrib><creatorcontrib>Xiao, Bingjia</creatorcontrib><creatorcontrib>Granetz, Robert</creatorcontrib><creatorcontrib>Marmar, Earl</creatorcontrib><creatorcontrib>the EUROfusion Tokamak Exploitation team</creatorcontrib><creatorcontrib>the Alcator C-Mod team</creatorcontrib><creatorcontrib>the ASDEX Upgrade team</creatorcontrib><creatorcontrib>the DIII-D team</creatorcontrib><creatorcontrib>the EAST team</creatorcontrib><creatorcontrib>the TCV team</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maris, Andrew</au><au>Rea, Cristina</au><au>Pau, Alessandro</au><au>Hu, Wenhui</au><au>Xiao, Bingjia</au><au>Granetz, Robert</au><au>Marmar, Earl</au><au>the EUROfusion Tokamak Exploitation team</au><au>the Alcator C-Mod team</au><au>the ASDEX Upgrade team</au><au>the DIII-D team</au><au>the EAST team</au><au>the TCV team</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Correlation of the L-mode density limit with edge collisionality</atitle><jtitle>arXiv.org</jtitle><date>2024-06-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The "density limit" is one of the fundamental bounds on tokamak operating space, and is commonly estimated via the empirical Greenwald scaling. This limit has garnered renewed interest in recent years as it has become clear that ITER and many tokamak pilot plant concepts must operate near or above the widely-used Greenwald limit to achieve their objectives. Evidence has also grown that the Greenwald scaling - in its remarkable simplicity - may not capture the full complexity of the disruptive density limit. In this study, we assemble a multi-machine database to quantify the effectiveness of the Greenwald limit as a predictor of the L-mode density limit and identify alternative stability metrics. We find that a two-parameter dimensionless boundary in the plasma edge, \(\nu_{*\rm, edge}^{\rm limit} = 3.0 \beta_{T,{\rm edge}}^{-0.4}\), achieves significantly higher accuracy (true negative rate of 97.7% at a true positive rate of 95%) than the Greenwald limit (true negative rate 86.1% at a true positive rate of 95%) across a multi-machine dataset including metal- and carbon-wall tokamaks (AUG, C-Mod, DIII-D, and TCV). The collisionality boundary presented here can be applied for density limit avoidance in current devices and in ITER, where it can be measured and responded to in real time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3072928261
source Free E- Journals
subjects Density
Nuclear power plants
Parameter identification
Tokamak devices
title Correlation of the L-mode density limit with edge collisionality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Correlation%20of%20the%20L-mode%20density%20limit%20with%20edge%20collisionality&rft.jtitle=arXiv.org&rft.au=Maris,%20Andrew&rft.date=2024-06-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3072928261%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072928261&rft_id=info:pmid/&rfr_iscdi=true