GlucOS: Security, correctness, and simplicity for automated insulin delivery

We present GlucOS, a novel system for trustworthy automated insulin delivery. Fundamentally, this paper is about a system we designed, implemented, and deployed on real humans and the lessons learned from our experiences. GlucOS combines algorithmic security, driver security, and end-to-end verifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Venugopalan, Hari, Shreyas Madhav Ambattur Vijayanand, Stanford, Caleb, Crossen, Stephanie, King, Samuel T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Venugopalan, Hari
Shreyas Madhav Ambattur Vijayanand
Stanford, Caleb
Crossen, Stephanie
King, Samuel T
description We present GlucOS, a novel system for trustworthy automated insulin delivery. Fundamentally, this paper is about a system we designed, implemented, and deployed on real humans and the lessons learned from our experiences. GlucOS combines algorithmic security, driver security, and end-to-end verification to protect against malicious ML models, vulnerable pump drivers, and drastic changes in human physiology. We use formal methods to prove correctness of critical components and incorporate humans as part of our defensive strategy. Our evaluation includes both a real-world deployment with seven individuals and results from simulation to show that our techniques generalize. Our results show that GlucOS maintains safety and improves glucose control even under attack conditions. This work demonstrates the potential for secure, personalized, automated healthcare systems. Our source code is open source.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3072927910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072927910</sourcerecordid><originalsourceid>FETCH-proquest_journals_30729279103</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwbSFNrLWu4mUQHHQvIT2FlDSpuQh9ezv4AE7_8P0LkjDOi_ywY2xFUu97SinbV6wseULuVx3l43mEJ8roVJgykNY5lMGg9xkI04JXw6iVnBE660DEYAcRsAVlfNTKQItafdBNG7LshPaY_rom28v5dbrlo7PviD40vY3OzNRwWrGaVXVB-X_XF2B9Pc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072927910</pqid></control><display><type>article</type><title>GlucOS: Security, correctness, and simplicity for automated insulin delivery</title><source>Free E- Journals</source><creator>Venugopalan, Hari ; Shreyas Madhav Ambattur Vijayanand ; Stanford, Caleb ; Crossen, Stephanie ; King, Samuel T</creator><creatorcontrib>Venugopalan, Hari ; Shreyas Madhav Ambattur Vijayanand ; Stanford, Caleb ; Crossen, Stephanie ; King, Samuel T</creatorcontrib><description>We present GlucOS, a novel system for trustworthy automated insulin delivery. Fundamentally, this paper is about a system we designed, implemented, and deployed on real humans and the lessons learned from our experiences. GlucOS combines algorithmic security, driver security, and end-to-end verification to protect against malicious ML models, vulnerable pump drivers, and drastic changes in human physiology. We use formal methods to prove correctness of critical components and incorporate humans as part of our defensive strategy. Our evaluation includes both a real-world deployment with seven individuals and results from simulation to show that our techniques generalize. Our results show that GlucOS maintains safety and improves glucose control even under attack conditions. This work demonstrates the potential for secure, personalized, automated healthcare systems. Our source code is open source.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Automation ; Critical components ; Formal method ; Insulin ; Metabolic disorders ; Metabolism ; Security ; Source code ; Virtual humans</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Venugopalan, Hari</creatorcontrib><creatorcontrib>Shreyas Madhav Ambattur Vijayanand</creatorcontrib><creatorcontrib>Stanford, Caleb</creatorcontrib><creatorcontrib>Crossen, Stephanie</creatorcontrib><creatorcontrib>King, Samuel T</creatorcontrib><title>GlucOS: Security, correctness, and simplicity for automated insulin delivery</title><title>arXiv.org</title><description>We present GlucOS, a novel system for trustworthy automated insulin delivery. Fundamentally, this paper is about a system we designed, implemented, and deployed on real humans and the lessons learned from our experiences. GlucOS combines algorithmic security, driver security, and end-to-end verification to protect against malicious ML models, vulnerable pump drivers, and drastic changes in human physiology. We use formal methods to prove correctness of critical components and incorporate humans as part of our defensive strategy. Our evaluation includes both a real-world deployment with seven individuals and results from simulation to show that our techniques generalize. Our results show that GlucOS maintains safety and improves glucose control even under attack conditions. This work demonstrates the potential for secure, personalized, automated healthcare systems. Our source code is open source.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Critical components</subject><subject>Formal method</subject><subject>Insulin</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Security</subject><subject>Source code</subject><subject>Virtual humans</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwbSFNrLWu4mUQHHQvIT2FlDSpuQh9ezv4AE7_8P0LkjDOi_ywY2xFUu97SinbV6wseULuVx3l43mEJ8roVJgykNY5lMGg9xkI04JXw6iVnBE660DEYAcRsAVlfNTKQItafdBNG7LshPaY_rom28v5dbrlo7PviD40vY3OzNRwWrGaVXVB-X_XF2B9Pc4</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Venugopalan, Hari</creator><creator>Shreyas Madhav Ambattur Vijayanand</creator><creator>Stanford, Caleb</creator><creator>Crossen, Stephanie</creator><creator>King, Samuel T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241022</creationdate><title>GlucOS: Security, correctness, and simplicity for automated insulin delivery</title><author>Venugopalan, Hari ; Shreyas Madhav Ambattur Vijayanand ; Stanford, Caleb ; Crossen, Stephanie ; King, Samuel T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30729279103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Critical components</topic><topic>Formal method</topic><topic>Insulin</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Security</topic><topic>Source code</topic><topic>Virtual humans</topic><toplevel>online_resources</toplevel><creatorcontrib>Venugopalan, Hari</creatorcontrib><creatorcontrib>Shreyas Madhav Ambattur Vijayanand</creatorcontrib><creatorcontrib>Stanford, Caleb</creatorcontrib><creatorcontrib>Crossen, Stephanie</creatorcontrib><creatorcontrib>King, Samuel T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venugopalan, Hari</au><au>Shreyas Madhav Ambattur Vijayanand</au><au>Stanford, Caleb</au><au>Crossen, Stephanie</au><au>King, Samuel T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GlucOS: Security, correctness, and simplicity for automated insulin delivery</atitle><jtitle>arXiv.org</jtitle><date>2024-10-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present GlucOS, a novel system for trustworthy automated insulin delivery. Fundamentally, this paper is about a system we designed, implemented, and deployed on real humans and the lessons learned from our experiences. GlucOS combines algorithmic security, driver security, and end-to-end verification to protect against malicious ML models, vulnerable pump drivers, and drastic changes in human physiology. We use formal methods to prove correctness of critical components and incorporate humans as part of our defensive strategy. Our evaluation includes both a real-world deployment with seven individuals and results from simulation to show that our techniques generalize. Our results show that GlucOS maintains safety and improves glucose control even under attack conditions. This work demonstrates the potential for secure, personalized, automated healthcare systems. Our source code is open source.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3072927910
source Free E- Journals
subjects Algorithms
Automation
Critical components
Formal method
Insulin
Metabolic disorders
Metabolism
Security
Source code
Virtual humans
title GlucOS: Security, correctness, and simplicity for automated insulin delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GlucOS:%20Security,%20correctness,%20and%20simplicity%20for%20automated%20insulin%20delivery&rft.jtitle=arXiv.org&rft.au=Venugopalan,%20Hari&rft.date=2024-10-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3072927910%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072927910&rft_id=info:pmid/&rfr_iscdi=true