The lattice Boltzmann method for mass transfer of miscible multicomponent mixtures: A review

Based on kinetic theory, the lattice Boltzmann method (LBM) is a versatile computational tool extensively applied to simulate diverse problems. It has particularly advanced in addressing general fluid flow, multiphase scenarios, and heat transfer. However, there is a notable gap in research concerni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of Fluids 2024-06, Vol.36 (6)
Hauptverfasser: Lourenço, Ramon G. C., Friggo, João R., Constantino, Pedro H., Tavares, Frederico W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physics of Fluids
container_volume 36
creator Lourenço, Ramon G. C.
Friggo, João R.
Constantino, Pedro H.
Tavares, Frederico W.
description Based on kinetic theory, the lattice Boltzmann method (LBM) is a versatile computational tool extensively applied to simulate diverse problems. It has particularly advanced in addressing general fluid flow, multiphase scenarios, and heat transfer. However, there is a notable gap in research concerning miscible fluids and an urgent need for thorough discussions on mass transfer via LBM in literature, emphasizing alternative modeling over traditional force and passive scalar models. Critical for applications, the understanding of mass transfer in miscible mixtures extends from scientific inquiry to engineering contexts. Hence, this review paper explores the dynamic interplay between mass transfer and fluid dynamics, focusing on the simulation of advection–diffusion problems for miscible non-reactive multicomponent mixtures through LBM. The paper categorizes two broad LBM strategies, the single-fluid and multifluid approaches, sheds light on their distinctive collision modeling techniques, and connects their mesoscale concepts to macroscopic properties and equations, such as viscosity, diffusion coefficient, and the Maxwell–Stefan and Fick equations. In the single-fluid strategy, we discuss the progress of the passive scalar models in mass transfer and the relevance of force models, such as the pseudopotential modeling, for simulation purposes. For multifluids, we detail the single collision technique and the alternative split collision scheme, in which, in this last one, we suggest classifying the models into explicit velocity-difference (Sirovich-based), equilibrium-adapted (Hamel-based), and quasi-equilibrium collision models. By providing a comprehensive overview, this text consolidates information regarding LBM mass transfer modeling, highlights directions for future research, and contributes to establishing a systematic approach for miscible mixtures.
doi_str_mv 10.1063/5.0205161
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3072887160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072887160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-f385f94c12611b2e52f0bc50665d5ce3bb6685b584f870f0a285f296367ce19d3</originalsourceid><addsrcrecordid>eNp90EtLAzEQAOAgCtbqwX8Q8KSwdZI0s1lvtfiCgpd6E5ZsmtAtu5uaZH39ere0Z08zDN_MMEPIJYMJAxS3cgIcJEN2REYMVJHliHi8y3PIEAU7JWcxbgBAFBxH5H25trTRKdXG0nvfpN9Wdx1tbVr7FXU-0FbHSFPQXXQ2UO9oW0dTV42lbd8Mbb7d-s52aah_pz7YeEdnNNjP2n6dkxOnm2gvDnFM3h4flvPnbPH69DKfLTLDFE-ZE0q6YmoYR8YqbiV3UBkJiHIljRVVhahkJdXUqRwcaD54XqDA3FhWrMSYXO3nboP_6G1M5cb3oRtWlgJyrlTOEAZ1vVcm-BiDdeU21K0OPyWDcve8UpaH5w32Zm-HU5NOte_-wX9nRG5P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072887160</pqid></control><display><type>article</type><title>The lattice Boltzmann method for mass transfer of miscible multicomponent mixtures: A review</title><source>AIP Journals Complete</source><creator>Lourenço, Ramon G. C. ; Friggo, João R. ; Constantino, Pedro H. ; Tavares, Frederico W.</creator><creatorcontrib>Lourenço, Ramon G. C. ; Friggo, João R. ; Constantino, Pedro H. ; Tavares, Frederico W.</creatorcontrib><description>Based on kinetic theory, the lattice Boltzmann method (LBM) is a versatile computational tool extensively applied to simulate diverse problems. It has particularly advanced in addressing general fluid flow, multiphase scenarios, and heat transfer. However, there is a notable gap in research concerning miscible fluids and an urgent need for thorough discussions on mass transfer via LBM in literature, emphasizing alternative modeling over traditional force and passive scalar models. Critical for applications, the understanding of mass transfer in miscible mixtures extends from scientific inquiry to engineering contexts. Hence, this review paper explores the dynamic interplay between mass transfer and fluid dynamics, focusing on the simulation of advection–diffusion problems for miscible non-reactive multicomponent mixtures through LBM. The paper categorizes two broad LBM strategies, the single-fluid and multifluid approaches, sheds light on their distinctive collision modeling techniques, and connects their mesoscale concepts to macroscopic properties and equations, such as viscosity, diffusion coefficient, and the Maxwell–Stefan and Fick equations. In the single-fluid strategy, we discuss the progress of the passive scalar models in mass transfer and the relevance of force models, such as the pseudopotential modeling, for simulation purposes. For multifluids, we detail the single collision technique and the alternative split collision scheme, in which, in this last one, we suggest classifying the models into explicit velocity-difference (Sirovich-based), equilibrium-adapted (Hamel-based), and quasi-equilibrium collision models. By providing a comprehensive overview, this text consolidates information regarding LBM mass transfer modeling, highlights directions for future research, and contributes to establishing a systematic approach for miscible mixtures.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0205161</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Diffusion coefficient ; Fluid dynamics ; Fluid flow ; Kinetic theory ; Mass transfer ; Miscibility ; Mixtures ; Modelling ; Software</subject><ispartof>Physics of Fluids, 2024-06, Vol.36 (6)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-f385f94c12611b2e52f0bc50665d5ce3bb6685b584f870f0a285f296367ce19d3</cites><orcidid>0000-0001-5809-4079 ; 0000-0002-9303-313X ; 0009-0003-8871-8921 ; 0000-0001-8108-1719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,781,785,793,795,4513,27927,27929,27930</link.rule.ids></links><search><creatorcontrib>Lourenço, Ramon G. C.</creatorcontrib><creatorcontrib>Friggo, João R.</creatorcontrib><creatorcontrib>Constantino, Pedro H.</creatorcontrib><creatorcontrib>Tavares, Frederico W.</creatorcontrib><title>The lattice Boltzmann method for mass transfer of miscible multicomponent mixtures: A review</title><title>Physics of Fluids</title><description>Based on kinetic theory, the lattice Boltzmann method (LBM) is a versatile computational tool extensively applied to simulate diverse problems. It has particularly advanced in addressing general fluid flow, multiphase scenarios, and heat transfer. However, there is a notable gap in research concerning miscible fluids and an urgent need for thorough discussions on mass transfer via LBM in literature, emphasizing alternative modeling over traditional force and passive scalar models. Critical for applications, the understanding of mass transfer in miscible mixtures extends from scientific inquiry to engineering contexts. Hence, this review paper explores the dynamic interplay between mass transfer and fluid dynamics, focusing on the simulation of advection–diffusion problems for miscible non-reactive multicomponent mixtures through LBM. The paper categorizes two broad LBM strategies, the single-fluid and multifluid approaches, sheds light on their distinctive collision modeling techniques, and connects their mesoscale concepts to macroscopic properties and equations, such as viscosity, diffusion coefficient, and the Maxwell–Stefan and Fick equations. In the single-fluid strategy, we discuss the progress of the passive scalar models in mass transfer and the relevance of force models, such as the pseudopotential modeling, for simulation purposes. For multifluids, we detail the single collision technique and the alternative split collision scheme, in which, in this last one, we suggest classifying the models into explicit velocity-difference (Sirovich-based), equilibrium-adapted (Hamel-based), and quasi-equilibrium collision models. By providing a comprehensive overview, this text consolidates information regarding LBM mass transfer modeling, highlights directions for future research, and contributes to establishing a systematic approach for miscible mixtures.</description><subject>Diffusion coefficient</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Kinetic theory</subject><subject>Mass transfer</subject><subject>Miscibility</subject><subject>Mixtures</subject><subject>Modelling</subject><subject>Software</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQAOAgCtbqwX8Q8KSwdZI0s1lvtfiCgpd6E5ZsmtAtu5uaZH39ere0Z08zDN_MMEPIJYMJAxS3cgIcJEN2REYMVJHliHi8y3PIEAU7JWcxbgBAFBxH5H25trTRKdXG0nvfpN9Wdx1tbVr7FXU-0FbHSFPQXXQ2UO9oW0dTV42lbd8Mbb7d-s52aah_pz7YeEdnNNjP2n6dkxOnm2gvDnFM3h4flvPnbPH69DKfLTLDFE-ZE0q6YmoYR8YqbiV3UBkJiHIljRVVhahkJdXUqRwcaD54XqDA3FhWrMSYXO3nboP_6G1M5cb3oRtWlgJyrlTOEAZ1vVcm-BiDdeU21K0OPyWDcve8UpaH5w32Zm-HU5NOte_-wX9nRG5P</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Lourenço, Ramon G. C.</creator><creator>Friggo, João R.</creator><creator>Constantino, Pedro H.</creator><creator>Tavares, Frederico W.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5809-4079</orcidid><orcidid>https://orcid.org/0000-0002-9303-313X</orcidid><orcidid>https://orcid.org/0009-0003-8871-8921</orcidid><orcidid>https://orcid.org/0000-0001-8108-1719</orcidid></search><sort><creationdate>202406</creationdate><title>The lattice Boltzmann method for mass transfer of miscible multicomponent mixtures: A review</title><author>Lourenço, Ramon G. C. ; Friggo, João R. ; Constantino, Pedro H. ; Tavares, Frederico W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-f385f94c12611b2e52f0bc50665d5ce3bb6685b584f870f0a285f296367ce19d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Diffusion coefficient</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Kinetic theory</topic><topic>Mass transfer</topic><topic>Miscibility</topic><topic>Mixtures</topic><topic>Modelling</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lourenço, Ramon G. C.</creatorcontrib><creatorcontrib>Friggo, João R.</creatorcontrib><creatorcontrib>Constantino, Pedro H.</creatorcontrib><creatorcontrib>Tavares, Frederico W.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of Fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lourenço, Ramon G. C.</au><au>Friggo, João R.</au><au>Constantino, Pedro H.</au><au>Tavares, Frederico W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The lattice Boltzmann method for mass transfer of miscible multicomponent mixtures: A review</atitle><jtitle>Physics of Fluids</jtitle><date>2024-06</date><risdate>2024</risdate><volume>36</volume><issue>6</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Based on kinetic theory, the lattice Boltzmann method (LBM) is a versatile computational tool extensively applied to simulate diverse problems. It has particularly advanced in addressing general fluid flow, multiphase scenarios, and heat transfer. However, there is a notable gap in research concerning miscible fluids and an urgent need for thorough discussions on mass transfer via LBM in literature, emphasizing alternative modeling over traditional force and passive scalar models. Critical for applications, the understanding of mass transfer in miscible mixtures extends from scientific inquiry to engineering contexts. Hence, this review paper explores the dynamic interplay between mass transfer and fluid dynamics, focusing on the simulation of advection–diffusion problems for miscible non-reactive multicomponent mixtures through LBM. The paper categorizes two broad LBM strategies, the single-fluid and multifluid approaches, sheds light on their distinctive collision modeling techniques, and connects their mesoscale concepts to macroscopic properties and equations, such as viscosity, diffusion coefficient, and the Maxwell–Stefan and Fick equations. In the single-fluid strategy, we discuss the progress of the passive scalar models in mass transfer and the relevance of force models, such as the pseudopotential modeling, for simulation purposes. For multifluids, we detail the single collision technique and the alternative split collision scheme, in which, in this last one, we suggest classifying the models into explicit velocity-difference (Sirovich-based), equilibrium-adapted (Hamel-based), and quasi-equilibrium collision models. By providing a comprehensive overview, this text consolidates information regarding LBM mass transfer modeling, highlights directions for future research, and contributes to establishing a systematic approach for miscible mixtures.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0205161</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-5809-4079</orcidid><orcidid>https://orcid.org/0000-0002-9303-313X</orcidid><orcidid>https://orcid.org/0009-0003-8871-8921</orcidid><orcidid>https://orcid.org/0000-0001-8108-1719</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of Fluids, 2024-06, Vol.36 (6)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_3072887160
source AIP Journals Complete
subjects Diffusion coefficient
Fluid dynamics
Fluid flow
Kinetic theory
Mass transfer
Miscibility
Mixtures
Modelling
Software
title The lattice Boltzmann method for mass transfer of miscible multicomponent mixtures: A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20lattice%20Boltzmann%20method%20for%20mass%20transfer%20of%20miscible%20multicomponent%20mixtures:%20A%20review&rft.jtitle=Physics%20of%20Fluids&rft.au=Louren%C3%A7o,%20Ramon%20G.%20C.&rft.date=2024-06&rft.volume=36&rft.issue=6&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0205161&rft_dat=%3Cproquest_scita%3E3072887160%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072887160&rft_id=info:pmid/&rfr_iscdi=true