A Roadmap to Support the Development of Chemistry Virtual Reality Learning Environments Merging Chemical Pedagogy and Educational Technology Design
The need to develop virtual reality learning environments (VRLEs) grounded in theory motivated this work that in turn provides guidelines to support chemistry VRLEs with evidence-based practices and frameworks. Herein, we describe nine frameworks that turned out to be critical for the design of a ch...
Gespeichert in:
Veröffentlicht in: | Journal of chemical education 2024-06, Vol.101 (6), p.2244-2256 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2256 |
---|---|
container_issue | 6 |
container_start_page | 2244 |
container_title | Journal of chemical education |
container_volume | 101 |
creator | Echeverri-Jimenez, Emmanuel Oliver-Hoyo, Maria |
description | The need to develop virtual reality learning environments (VRLEs) grounded in theory motivated this work that in turn provides guidelines to support chemistry VRLEs with evidence-based practices and frameworks. Herein, we describe nine frameworks that turned out to be critical for the design of a chemistry focused VRLE, paying special attention to the frameworks’ interconnectivity. Different framework components were crucial in different aspects of the content design, technology design, and content–technology integration, and throughout this article, we illustrate the application of each framework. As the main objective was to build a resource to support visual-spatial attributes, a shape recognition framework was developed to facilitate students’ abilities to recognize 3D characteristics from 2D representations inherent in VRLEs. The interconnected frameworks’ components complement and reinforce each other, creating a synergistic effect to support visuospatial thinking and representational competence in a VRLE. This process helped shape a set of recommendations aimed to guide other developers to produce pedagogically sound VRLEs. |
doi_str_mv | 10.1021/acs.jchemed.3c01205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072833399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072833399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a197t-91749559a53182cfb435170c556e5abbea2bdce3b8ff33c7c2313b5b078bcbe33</originalsourceid><addsrcrecordid>eNp9kM1q3DAUhUVoINNJnyAbQdeeSL6j2FqGyTQtTGjJT7dGkq89HjySK8kBP0dfuJqfbrMS3PN9B3EIueFswVnOb5UJi53Z4h7rBRjGcyYuyIxLKDMOefmJzFjCMinK5RX5HMKOJUbIckb-3tNnp-q9Gmh09GUcBucjjVukD_iOvRv2aCN1DV2l9i5EP9HfnY-j6ukzqr6LE92g8razLV3b9847ezACfULfHo5HzyT8F9aqde1Ela3puh6Nip2zKXhFs7WuP0QPGLrWXpPLRvUBv5zfOXn7tn5dfc82Px9_rO43meKyiJnkxVIKIZUAXuam0UsQvGBGiDsUSmtUua4Ngi6bBsAUJgcOWmhWlNpoBJiTr6fewbs_I4ZY7dzo05dCBazISwCQMlFwoox3IXhsqsF3e-WnirPqsH6V1q_O61fn9ZN1e7KO4f_aj4x_OL-N-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072833399</pqid></control><display><type>article</type><title>A Roadmap to Support the Development of Chemistry Virtual Reality Learning Environments Merging Chemical Pedagogy and Educational Technology Design</title><source>ACS Publications</source><creator>Echeverri-Jimenez, Emmanuel ; Oliver-Hoyo, Maria</creator><creatorcontrib>Echeverri-Jimenez, Emmanuel ; Oliver-Hoyo, Maria</creatorcontrib><description>The need to develop virtual reality learning environments (VRLEs) grounded in theory motivated this work that in turn provides guidelines to support chemistry VRLEs with evidence-based practices and frameworks. Herein, we describe nine frameworks that turned out to be critical for the design of a chemistry focused VRLE, paying special attention to the frameworks’ interconnectivity. Different framework components were crucial in different aspects of the content design, technology design, and content–technology integration, and throughout this article, we illustrate the application of each framework. As the main objective was to build a resource to support visual-spatial attributes, a shape recognition framework was developed to facilitate students’ abilities to recognize 3D characteristics from 2D representations inherent in VRLEs. The interconnected frameworks’ components complement and reinforce each other, creating a synergistic effect to support visuospatial thinking and representational competence in a VRLE. This process helped shape a set of recommendations aimed to guide other developers to produce pedagogically sound VRLEs.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/acs.jchemed.3c01205</identifier><language>eng</language><publisher>Easton: American Chemical Society and Division of Chemical Education, Inc</publisher><subject>Academic Ability ; Chemistry ; Computer Simulation ; Design ; Educational Technology ; Evidence Based Practice ; Learning ; Learning environment ; Organic chemistry ; School environment ; Shape recognition ; Synergistic effect ; Technology Integration ; Virtual reality</subject><ispartof>Journal of chemical education, 2024-06, Vol.101 (6), p.2244-2256</ispartof><rights>2024 American Chemical Society and Division of Chemical Education, Inc.</rights><rights>Copyright American Chemical Society Jun 11, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a197t-91749559a53182cfb435170c556e5abbea2bdce3b8ff33c7c2313b5b078bcbe33</cites><orcidid>0000-0002-5199-897X ; 0000-0003-3542-4930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jchemed.3c01205$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jchemed.3c01205$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Echeverri-Jimenez, Emmanuel</creatorcontrib><creatorcontrib>Oliver-Hoyo, Maria</creatorcontrib><title>A Roadmap to Support the Development of Chemistry Virtual Reality Learning Environments Merging Chemical Pedagogy and Educational Technology Design</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>The need to develop virtual reality learning environments (VRLEs) grounded in theory motivated this work that in turn provides guidelines to support chemistry VRLEs with evidence-based practices and frameworks. Herein, we describe nine frameworks that turned out to be critical for the design of a chemistry focused VRLE, paying special attention to the frameworks’ interconnectivity. Different framework components were crucial in different aspects of the content design, technology design, and content–technology integration, and throughout this article, we illustrate the application of each framework. As the main objective was to build a resource to support visual-spatial attributes, a shape recognition framework was developed to facilitate students’ abilities to recognize 3D characteristics from 2D representations inherent in VRLEs. The interconnected frameworks’ components complement and reinforce each other, creating a synergistic effect to support visuospatial thinking and representational competence in a VRLE. This process helped shape a set of recommendations aimed to guide other developers to produce pedagogically sound VRLEs.</description><subject>Academic Ability</subject><subject>Chemistry</subject><subject>Computer Simulation</subject><subject>Design</subject><subject>Educational Technology</subject><subject>Evidence Based Practice</subject><subject>Learning</subject><subject>Learning environment</subject><subject>Organic chemistry</subject><subject>School environment</subject><subject>Shape recognition</subject><subject>Synergistic effect</subject><subject>Technology Integration</subject><subject>Virtual reality</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAUhUVoINNJnyAbQdeeSL6j2FqGyTQtTGjJT7dGkq89HjySK8kBP0dfuJqfbrMS3PN9B3EIueFswVnOb5UJi53Z4h7rBRjGcyYuyIxLKDMOefmJzFjCMinK5RX5HMKOJUbIckb-3tNnp-q9Gmh09GUcBucjjVukD_iOvRv2aCN1DV2l9i5EP9HfnY-j6ukzqr6LE92g8razLV3b9847ezACfULfHo5HzyT8F9aqde1Ela3puh6Nip2zKXhFs7WuP0QPGLrWXpPLRvUBv5zfOXn7tn5dfc82Px9_rO43meKyiJnkxVIKIZUAXuam0UsQvGBGiDsUSmtUua4Ngi6bBsAUJgcOWmhWlNpoBJiTr6fewbs_I4ZY7dzo05dCBazISwCQMlFwoox3IXhsqsF3e-WnirPqsH6V1q_O61fn9ZN1e7KO4f_aj4x_OL-N-A</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>Echeverri-Jimenez, Emmanuel</creator><creator>Oliver-Hoyo, Maria</creator><general>American Chemical Society and Division of Chemical Education, Inc</general><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-5199-897X</orcidid><orcidid>https://orcid.org/0000-0003-3542-4930</orcidid></search><sort><creationdate>20240611</creationdate><title>A Roadmap to Support the Development of Chemistry Virtual Reality Learning Environments Merging Chemical Pedagogy and Educational Technology Design</title><author>Echeverri-Jimenez, Emmanuel ; Oliver-Hoyo, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a197t-91749559a53182cfb435170c556e5abbea2bdce3b8ff33c7c2313b5b078bcbe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Academic Ability</topic><topic>Chemistry</topic><topic>Computer Simulation</topic><topic>Design</topic><topic>Educational Technology</topic><topic>Evidence Based Practice</topic><topic>Learning</topic><topic>Learning environment</topic><topic>Organic chemistry</topic><topic>School environment</topic><topic>Shape recognition</topic><topic>Synergistic effect</topic><topic>Technology Integration</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Echeverri-Jimenez, Emmanuel</creatorcontrib><creatorcontrib>Oliver-Hoyo, Maria</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Echeverri-Jimenez, Emmanuel</au><au>Oliver-Hoyo, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Roadmap to Support the Development of Chemistry Virtual Reality Learning Environments Merging Chemical Pedagogy and Educational Technology Design</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2024-06-11</date><risdate>2024</risdate><volume>101</volume><issue>6</issue><spage>2244</spage><epage>2256</epage><pages>2244-2256</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><abstract>The need to develop virtual reality learning environments (VRLEs) grounded in theory motivated this work that in turn provides guidelines to support chemistry VRLEs with evidence-based practices and frameworks. Herein, we describe nine frameworks that turned out to be critical for the design of a chemistry focused VRLE, paying special attention to the frameworks’ interconnectivity. Different framework components were crucial in different aspects of the content design, technology design, and content–technology integration, and throughout this article, we illustrate the application of each framework. As the main objective was to build a resource to support visual-spatial attributes, a shape recognition framework was developed to facilitate students’ abilities to recognize 3D characteristics from 2D representations inherent in VRLEs. The interconnected frameworks’ components complement and reinforce each other, creating a synergistic effect to support visuospatial thinking and representational competence in a VRLE. This process helped shape a set of recommendations aimed to guide other developers to produce pedagogically sound VRLEs.</abstract><cop>Easton</cop><pub>American Chemical Society and Division of Chemical Education, Inc</pub><doi>10.1021/acs.jchemed.3c01205</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5199-897X</orcidid><orcidid>https://orcid.org/0000-0003-3542-4930</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9584 |
ispartof | Journal of chemical education, 2024-06, Vol.101 (6), p.2244-2256 |
issn | 0021-9584 1938-1328 |
language | eng |
recordid | cdi_proquest_journals_3072833399 |
source | ACS Publications |
subjects | Academic Ability Chemistry Computer Simulation Design Educational Technology Evidence Based Practice Learning Learning environment Organic chemistry School environment Shape recognition Synergistic effect Technology Integration Virtual reality |
title | A Roadmap to Support the Development of Chemistry Virtual Reality Learning Environments Merging Chemical Pedagogy and Educational Technology Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Roadmap%20to%20Support%20the%20Development%20of%20Chemistry%20Virtual%20Reality%20Learning%20Environments%20Merging%20Chemical%20Pedagogy%20and%20Educational%20Technology%20Design&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Echeverri-Jimenez,%20Emmanuel&rft.date=2024-06-11&rft.volume=101&rft.issue=6&rft.spage=2244&rft.epage=2256&rft.pages=2244-2256&rft.issn=0021-9584&rft.eissn=1938-1328&rft_id=info:doi/10.1021/acs.jchemed.3c01205&rft_dat=%3Cproquest_cross%3E3072833399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072833399&rft_id=info:pmid/&rfr_iscdi=true |