A Roadmap to Support the Development of Chemistry Virtual Reality Learning Environments Merging Chemical Pedagogy and Educational Technology Design

The need to develop virtual reality learning environments (VRLEs) grounded in theory motivated this work that in turn provides guidelines to support chemistry VRLEs with evidence-based practices and frameworks. Herein, we describe nine frameworks that turned out to be critical for the design of a ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical education 2024-06, Vol.101 (6), p.2244-2256
Hauptverfasser: Echeverri-Jimenez, Emmanuel, Oliver-Hoyo, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2256
container_issue 6
container_start_page 2244
container_title Journal of chemical education
container_volume 101
creator Echeverri-Jimenez, Emmanuel
Oliver-Hoyo, Maria
description The need to develop virtual reality learning environments (VRLEs) grounded in theory motivated this work that in turn provides guidelines to support chemistry VRLEs with evidence-based practices and frameworks. Herein, we describe nine frameworks that turned out to be critical for the design of a chemistry focused VRLE, paying special attention to the frameworks’ interconnectivity. Different framework components were crucial in different aspects of the content design, technology design, and content–technology integration, and throughout this article, we illustrate the application of each framework. As the main objective was to build a resource to support visual-spatial attributes, a shape recognition framework was developed to facilitate students’ abilities to recognize 3D characteristics from 2D representations inherent in VRLEs. The interconnected frameworks’ components complement and reinforce each other, creating a synergistic effect to support visuospatial thinking and representational competence in a VRLE. This process helped shape a set of recommendations aimed to guide other developers to produce pedagogically sound VRLEs.
doi_str_mv 10.1021/acs.jchemed.3c01205
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072833399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072833399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a197t-91749559a53182cfb435170c556e5abbea2bdce3b8ff33c7c2313b5b078bcbe33</originalsourceid><addsrcrecordid>eNp9kM1q3DAUhUVoINNJnyAbQdeeSL6j2FqGyTQtTGjJT7dGkq89HjySK8kBP0dfuJqfbrMS3PN9B3EIueFswVnOb5UJi53Z4h7rBRjGcyYuyIxLKDMOefmJzFjCMinK5RX5HMKOJUbIckb-3tNnp-q9Gmh09GUcBucjjVukD_iOvRv2aCN1DV2l9i5EP9HfnY-j6ukzqr6LE92g8razLV3b9847ezACfULfHo5HzyT8F9aqde1Ela3puh6Nip2zKXhFs7WuP0QPGLrWXpPLRvUBv5zfOXn7tn5dfc82Px9_rO43meKyiJnkxVIKIZUAXuam0UsQvGBGiDsUSmtUua4Ngi6bBsAUJgcOWmhWlNpoBJiTr6fewbs_I4ZY7dzo05dCBazISwCQMlFwoox3IXhsqsF3e-WnirPqsH6V1q_O61fn9ZN1e7KO4f_aj4x_OL-N-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072833399</pqid></control><display><type>article</type><title>A Roadmap to Support the Development of Chemistry Virtual Reality Learning Environments Merging Chemical Pedagogy and Educational Technology Design</title><source>ACS Publications</source><creator>Echeverri-Jimenez, Emmanuel ; Oliver-Hoyo, Maria</creator><creatorcontrib>Echeverri-Jimenez, Emmanuel ; Oliver-Hoyo, Maria</creatorcontrib><description>The need to develop virtual reality learning environments (VRLEs) grounded in theory motivated this work that in turn provides guidelines to support chemistry VRLEs with evidence-based practices and frameworks. Herein, we describe nine frameworks that turned out to be critical for the design of a chemistry focused VRLE, paying special attention to the frameworks’ interconnectivity. Different framework components were crucial in different aspects of the content design, technology design, and content–technology integration, and throughout this article, we illustrate the application of each framework. As the main objective was to build a resource to support visual-spatial attributes, a shape recognition framework was developed to facilitate students’ abilities to recognize 3D characteristics from 2D representations inherent in VRLEs. The interconnected frameworks’ components complement and reinforce each other, creating a synergistic effect to support visuospatial thinking and representational competence in a VRLE. This process helped shape a set of recommendations aimed to guide other developers to produce pedagogically sound VRLEs.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/acs.jchemed.3c01205</identifier><language>eng</language><publisher>Easton: American Chemical Society and Division of Chemical Education, Inc</publisher><subject>Academic Ability ; Chemistry ; Computer Simulation ; Design ; Educational Technology ; Evidence Based Practice ; Learning ; Learning environment ; Organic chemistry ; School environment ; Shape recognition ; Synergistic effect ; Technology Integration ; Virtual reality</subject><ispartof>Journal of chemical education, 2024-06, Vol.101 (6), p.2244-2256</ispartof><rights>2024 American Chemical Society and Division of Chemical Education, Inc.</rights><rights>Copyright American Chemical Society Jun 11, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a197t-91749559a53182cfb435170c556e5abbea2bdce3b8ff33c7c2313b5b078bcbe33</cites><orcidid>0000-0002-5199-897X ; 0000-0003-3542-4930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jchemed.3c01205$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jchemed.3c01205$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Echeverri-Jimenez, Emmanuel</creatorcontrib><creatorcontrib>Oliver-Hoyo, Maria</creatorcontrib><title>A Roadmap to Support the Development of Chemistry Virtual Reality Learning Environments Merging Chemical Pedagogy and Educational Technology Design</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>The need to develop virtual reality learning environments (VRLEs) grounded in theory motivated this work that in turn provides guidelines to support chemistry VRLEs with evidence-based practices and frameworks. Herein, we describe nine frameworks that turned out to be critical for the design of a chemistry focused VRLE, paying special attention to the frameworks’ interconnectivity. Different framework components were crucial in different aspects of the content design, technology design, and content–technology integration, and throughout this article, we illustrate the application of each framework. As the main objective was to build a resource to support visual-spatial attributes, a shape recognition framework was developed to facilitate students’ abilities to recognize 3D characteristics from 2D representations inherent in VRLEs. The interconnected frameworks’ components complement and reinforce each other, creating a synergistic effect to support visuospatial thinking and representational competence in a VRLE. This process helped shape a set of recommendations aimed to guide other developers to produce pedagogically sound VRLEs.</description><subject>Academic Ability</subject><subject>Chemistry</subject><subject>Computer Simulation</subject><subject>Design</subject><subject>Educational Technology</subject><subject>Evidence Based Practice</subject><subject>Learning</subject><subject>Learning environment</subject><subject>Organic chemistry</subject><subject>School environment</subject><subject>Shape recognition</subject><subject>Synergistic effect</subject><subject>Technology Integration</subject><subject>Virtual reality</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAUhUVoINNJnyAbQdeeSL6j2FqGyTQtTGjJT7dGkq89HjySK8kBP0dfuJqfbrMS3PN9B3EIueFswVnOb5UJi53Z4h7rBRjGcyYuyIxLKDMOefmJzFjCMinK5RX5HMKOJUbIckb-3tNnp-q9Gmh09GUcBucjjVukD_iOvRv2aCN1DV2l9i5EP9HfnY-j6ukzqr6LE92g8razLV3b9847ezACfULfHo5HzyT8F9aqde1Ela3puh6Nip2zKXhFs7WuP0QPGLrWXpPLRvUBv5zfOXn7tn5dfc82Px9_rO43meKyiJnkxVIKIZUAXuam0UsQvGBGiDsUSmtUua4Ngi6bBsAUJgcOWmhWlNpoBJiTr6fewbs_I4ZY7dzo05dCBazISwCQMlFwoox3IXhsqsF3e-WnirPqsH6V1q_O61fn9ZN1e7KO4f_aj4x_OL-N-A</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>Echeverri-Jimenez, Emmanuel</creator><creator>Oliver-Hoyo, Maria</creator><general>American Chemical Society and Division of Chemical Education, Inc</general><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-5199-897X</orcidid><orcidid>https://orcid.org/0000-0003-3542-4930</orcidid></search><sort><creationdate>20240611</creationdate><title>A Roadmap to Support the Development of Chemistry Virtual Reality Learning Environments Merging Chemical Pedagogy and Educational Technology Design</title><author>Echeverri-Jimenez, Emmanuel ; Oliver-Hoyo, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a197t-91749559a53182cfb435170c556e5abbea2bdce3b8ff33c7c2313b5b078bcbe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Academic Ability</topic><topic>Chemistry</topic><topic>Computer Simulation</topic><topic>Design</topic><topic>Educational Technology</topic><topic>Evidence Based Practice</topic><topic>Learning</topic><topic>Learning environment</topic><topic>Organic chemistry</topic><topic>School environment</topic><topic>Shape recognition</topic><topic>Synergistic effect</topic><topic>Technology Integration</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Echeverri-Jimenez, Emmanuel</creatorcontrib><creatorcontrib>Oliver-Hoyo, Maria</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Echeverri-Jimenez, Emmanuel</au><au>Oliver-Hoyo, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Roadmap to Support the Development of Chemistry Virtual Reality Learning Environments Merging Chemical Pedagogy and Educational Technology Design</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2024-06-11</date><risdate>2024</risdate><volume>101</volume><issue>6</issue><spage>2244</spage><epage>2256</epage><pages>2244-2256</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><abstract>The need to develop virtual reality learning environments (VRLEs) grounded in theory motivated this work that in turn provides guidelines to support chemistry VRLEs with evidence-based practices and frameworks. Herein, we describe nine frameworks that turned out to be critical for the design of a chemistry focused VRLE, paying special attention to the frameworks’ interconnectivity. Different framework components were crucial in different aspects of the content design, technology design, and content–technology integration, and throughout this article, we illustrate the application of each framework. As the main objective was to build a resource to support visual-spatial attributes, a shape recognition framework was developed to facilitate students’ abilities to recognize 3D characteristics from 2D representations inherent in VRLEs. The interconnected frameworks’ components complement and reinforce each other, creating a synergistic effect to support visuospatial thinking and representational competence in a VRLE. This process helped shape a set of recommendations aimed to guide other developers to produce pedagogically sound VRLEs.</abstract><cop>Easton</cop><pub>American Chemical Society and Division of Chemical Education, Inc</pub><doi>10.1021/acs.jchemed.3c01205</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5199-897X</orcidid><orcidid>https://orcid.org/0000-0003-3542-4930</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9584
ispartof Journal of chemical education, 2024-06, Vol.101 (6), p.2244-2256
issn 0021-9584
1938-1328
language eng
recordid cdi_proquest_journals_3072833399
source ACS Publications
subjects Academic Ability
Chemistry
Computer Simulation
Design
Educational Technology
Evidence Based Practice
Learning
Learning environment
Organic chemistry
School environment
Shape recognition
Synergistic effect
Technology Integration
Virtual reality
title A Roadmap to Support the Development of Chemistry Virtual Reality Learning Environments Merging Chemical Pedagogy and Educational Technology Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Roadmap%20to%20Support%20the%20Development%20of%20Chemistry%20Virtual%20Reality%20Learning%20Environments%20Merging%20Chemical%20Pedagogy%20and%20Educational%20Technology%20Design&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Echeverri-Jimenez,%20Emmanuel&rft.date=2024-06-11&rft.volume=101&rft.issue=6&rft.spage=2244&rft.epage=2256&rft.pages=2244-2256&rft.issn=0021-9584&rft.eissn=1938-1328&rft_id=info:doi/10.1021/acs.jchemed.3c01205&rft_dat=%3Cproquest_cross%3E3072833399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072833399&rft_id=info:pmid/&rfr_iscdi=true