New Approach to Preventing External Overheating of High-Speed Aircraft
External overheating of high-speed aircraft may be prevented by means of composites with significant longitudinal anisotropy. (The longitudinal thermal conductivity is two orders of magnitude greater than the transverse thermal conductivity.) In this approach, the heat fluxes that result from aerody...
Gespeichert in:
Veröffentlicht in: | Russian engineering research 2024, Vol.44 (5), p.705-708 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 708 |
---|---|
container_issue | 5 |
container_start_page | 705 |
container_title | Russian engineering research |
container_volume | 44 |
creator | Formalev, V. F. Kolesnik, S. A. Garibyan, B. A. Pashkov, O. A. Pegachkova, E. A. |
description | External overheating of high-speed aircraft may be prevented by means of composites with significant longitudinal anisotropy. (The longitudinal thermal conductivity is two orders of magnitude greater than the transverse thermal conductivity.) In this approach, the heat fluxes that result from aerodynamic heating are channeled within the anisotropic composites from the hottest region (the front critical point) to the tail of the truncated cone. As a result, the vicinity of the front critical point is cooled and the tail of the cone is heated, with considerable decrease in the associated heat fluxes. |
doi_str_mv | 10.3103/S1068798X24700904 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072773022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072773022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1134-b0851a15989d8ea1e938987568b93b66ba92360d3357f8782e9b8ff8c37cd6c53</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnP4A3wI-V_OxNDePY2xOGE6Ygm8lbW-2jtnWpJvz35s5wQfx6R7u-eBwCLnm7FZyJu8WnKWgDbyKgWbMsMEJ6XEjBwkwgNOII50c-HNyEcKaMaWMUj0yecQPOmxb39hiRbuGPnncYd1V9ZKO9x362m7ofId-hfb72Tg6rZarZNEilnRY-cJb112SM2c3Aa9-bp-8TMbPo2kym98_jIazpOA8lskZKG65MmBKQMvRSDCgVQq5kXma5tYImbJSSqUdaBBocnAOCqmLMi2U7JObY24s_L7F0GXrZnvoGDLJtNBaMiGiih9VhW9C8Oiy1ldv1n9mnGWHubI_c0WPOHpC1NZL9L_J_5u-ANv0arg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072773022</pqid></control><display><type>article</type><title>New Approach to Preventing External Overheating of High-Speed Aircraft</title><source>SpringerLink Journals - AutoHoldings</source><creator>Formalev, V. F. ; Kolesnik, S. A. ; Garibyan, B. A. ; Pashkov, O. A. ; Pegachkova, E. A.</creator><creatorcontrib>Formalev, V. F. ; Kolesnik, S. A. ; Garibyan, B. A. ; Pashkov, O. A. ; Pegachkova, E. A.</creatorcontrib><description>External overheating of high-speed aircraft may be prevented by means of composites with significant longitudinal anisotropy. (The longitudinal thermal conductivity is two orders of magnitude greater than the transverse thermal conductivity.) In this approach, the heat fluxes that result from aerodynamic heating are channeled within the anisotropic composites from the hottest region (the front critical point) to the tail of the truncated cone. As a result, the vicinity of the front critical point is cooled and the tail of the cone is heated, with considerable decrease in the associated heat fluxes.</description><identifier>ISSN: 1068-798X</identifier><identifier>EISSN: 1934-8088</identifier><identifier>DOI: 10.3103/S1068798X24700904</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aerodynamic heating ; Anisotropy ; Composite materials ; Critical point ; Engineering ; Engineering Design ; Heat flux ; Heat transfer ; High speed ; Overheating ; Thermal conductivity</subject><ispartof>Russian engineering research, 2024, Vol.44 (5), p.705-708</ispartof><rights>Allerton Press, Inc. 2024. ISSN 1068-798X, Russian Engineering Research, 2024, Vol. 44, No. 5, pp. 705–708. © Allerton Press, Inc., 2024. Russian Text © The Author(s), 2024, published in STIN, 2024, No. 4, pp. 13–16.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1134-b0851a15989d8ea1e938987568b93b66ba92360d3357f8782e9b8ff8c37cd6c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068798X24700904$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068798X24700904$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Formalev, V. F.</creatorcontrib><creatorcontrib>Kolesnik, S. A.</creatorcontrib><creatorcontrib>Garibyan, B. A.</creatorcontrib><creatorcontrib>Pashkov, O. A.</creatorcontrib><creatorcontrib>Pegachkova, E. A.</creatorcontrib><title>New Approach to Preventing External Overheating of High-Speed Aircraft</title><title>Russian engineering research</title><addtitle>Russ. Engin. Res</addtitle><description>External overheating of high-speed aircraft may be prevented by means of composites with significant longitudinal anisotropy. (The longitudinal thermal conductivity is two orders of magnitude greater than the transverse thermal conductivity.) In this approach, the heat fluxes that result from aerodynamic heating are channeled within the anisotropic composites from the hottest region (the front critical point) to the tail of the truncated cone. As a result, the vicinity of the front critical point is cooled and the tail of the cone is heated, with considerable decrease in the associated heat fluxes.</description><subject>Aerodynamic heating</subject><subject>Anisotropy</subject><subject>Composite materials</subject><subject>Critical point</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>High speed</subject><subject>Overheating</subject><subject>Thermal conductivity</subject><issn>1068-798X</issn><issn>1934-8088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LwzAUDaLgnP4A3wI-V_OxNDePY2xOGE6Ygm8lbW-2jtnWpJvz35s5wQfx6R7u-eBwCLnm7FZyJu8WnKWgDbyKgWbMsMEJ6XEjBwkwgNOII50c-HNyEcKaMaWMUj0yecQPOmxb39hiRbuGPnncYd1V9ZKO9x362m7ofId-hfb72Tg6rZarZNEilnRY-cJb112SM2c3Aa9-bp-8TMbPo2kym98_jIazpOA8lskZKG65MmBKQMvRSDCgVQq5kXma5tYImbJSSqUdaBBocnAOCqmLMi2U7JObY24s_L7F0GXrZnvoGDLJtNBaMiGiih9VhW9C8Oiy1ldv1n9mnGWHubI_c0WPOHpC1NZL9L_J_5u-ANv0arg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Formalev, V. F.</creator><creator>Kolesnik, S. A.</creator><creator>Garibyan, B. A.</creator><creator>Pashkov, O. A.</creator><creator>Pegachkova, E. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>New Approach to Preventing External Overheating of High-Speed Aircraft</title><author>Formalev, V. F. ; Kolesnik, S. A. ; Garibyan, B. A. ; Pashkov, O. A. ; Pegachkova, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1134-b0851a15989d8ea1e938987568b93b66ba92360d3357f8782e9b8ff8c37cd6c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerodynamic heating</topic><topic>Anisotropy</topic><topic>Composite materials</topic><topic>Critical point</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>High speed</topic><topic>Overheating</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Formalev, V. F.</creatorcontrib><creatorcontrib>Kolesnik, S. A.</creatorcontrib><creatorcontrib>Garibyan, B. A.</creatorcontrib><creatorcontrib>Pashkov, O. A.</creatorcontrib><creatorcontrib>Pegachkova, E. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian engineering research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Formalev, V. F.</au><au>Kolesnik, S. A.</au><au>Garibyan, B. A.</au><au>Pashkov, O. A.</au><au>Pegachkova, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Approach to Preventing External Overheating of High-Speed Aircraft</atitle><jtitle>Russian engineering research</jtitle><stitle>Russ. Engin. Res</stitle><date>2024</date><risdate>2024</risdate><volume>44</volume><issue>5</issue><spage>705</spage><epage>708</epage><pages>705-708</pages><issn>1068-798X</issn><eissn>1934-8088</eissn><abstract>External overheating of high-speed aircraft may be prevented by means of composites with significant longitudinal anisotropy. (The longitudinal thermal conductivity is two orders of magnitude greater than the transverse thermal conductivity.) In this approach, the heat fluxes that result from aerodynamic heating are channeled within the anisotropic composites from the hottest region (the front critical point) to the tail of the truncated cone. As a result, the vicinity of the front critical point is cooled and the tail of the cone is heated, with considerable decrease in the associated heat fluxes.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068798X24700904</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-798X |
ispartof | Russian engineering research, 2024, Vol.44 (5), p.705-708 |
issn | 1068-798X 1934-8088 |
language | eng |
recordid | cdi_proquest_journals_3072773022 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aerodynamic heating Anisotropy Composite materials Critical point Engineering Engineering Design Heat flux Heat transfer High speed Overheating Thermal conductivity |
title | New Approach to Preventing External Overheating of High-Speed Aircraft |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Approach%20to%20Preventing%20External%20Overheating%20of%20High-Speed%20Aircraft&rft.jtitle=Russian%20engineering%20research&rft.au=Formalev,%20V.%20F.&rft.date=2024&rft.volume=44&rft.issue=5&rft.spage=705&rft.epage=708&rft.pages=705-708&rft.issn=1068-798X&rft.eissn=1934-8088&rft_id=info:doi/10.3103/S1068798X24700904&rft_dat=%3Cproquest_cross%3E3072773022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072773022&rft_id=info:pmid/&rfr_iscdi=true |