New Approach to Preventing External Overheating of High-Speed Aircraft

External overheating of high-speed aircraft may be prevented by means of composites with significant longitudinal anisotropy. (The longitudinal thermal conductivity is two orders of magnitude greater than the transverse thermal conductivity.) In this approach, the heat fluxes that result from aerody...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian engineering research 2024, Vol.44 (5), p.705-708
Hauptverfasser: Formalev, V. F., Kolesnik, S. A., Garibyan, B. A., Pashkov, O. A., Pegachkova, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 708
container_issue 5
container_start_page 705
container_title Russian engineering research
container_volume 44
creator Formalev, V. F.
Kolesnik, S. A.
Garibyan, B. A.
Pashkov, O. A.
Pegachkova, E. A.
description External overheating of high-speed aircraft may be prevented by means of composites with significant longitudinal anisotropy. (The longitudinal thermal conductivity is two orders of magnitude greater than the transverse thermal conductivity.) In this approach, the heat fluxes that result from aerodynamic heating are channeled within the anisotropic composites from the hottest region (the front critical point) to the tail of the truncated cone. As a result, the vicinity of the front critical point is cooled and the tail of the cone is heated, with considerable decrease in the associated heat fluxes.
doi_str_mv 10.3103/S1068798X24700904
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072773022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072773022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1134-b0851a15989d8ea1e938987568b93b66ba92360d3357f8782e9b8ff8c37cd6c53</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnP4A3wI-V_OxNDePY2xOGE6Ygm8lbW-2jtnWpJvz35s5wQfx6R7u-eBwCLnm7FZyJu8WnKWgDbyKgWbMsMEJ6XEjBwkwgNOII50c-HNyEcKaMaWMUj0yecQPOmxb39hiRbuGPnncYd1V9ZKO9x362m7ofId-hfb72Tg6rZarZNEilnRY-cJb112SM2c3Aa9-bp-8TMbPo2kym98_jIazpOA8lskZKG65MmBKQMvRSDCgVQq5kXma5tYImbJSSqUdaBBocnAOCqmLMi2U7JObY24s_L7F0GXrZnvoGDLJtNBaMiGiih9VhW9C8Oiy1ldv1n9mnGWHubI_c0WPOHpC1NZL9L_J_5u-ANv0arg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072773022</pqid></control><display><type>article</type><title>New Approach to Preventing External Overheating of High-Speed Aircraft</title><source>SpringerLink Journals - AutoHoldings</source><creator>Formalev, V. F. ; Kolesnik, S. A. ; Garibyan, B. A. ; Pashkov, O. A. ; Pegachkova, E. A.</creator><creatorcontrib>Formalev, V. F. ; Kolesnik, S. A. ; Garibyan, B. A. ; Pashkov, O. A. ; Pegachkova, E. A.</creatorcontrib><description>External overheating of high-speed aircraft may be prevented by means of composites with significant longitudinal anisotropy. (The longitudinal thermal conductivity is two orders of magnitude greater than the transverse thermal conductivity.) In this approach, the heat fluxes that result from aerodynamic heating are channeled within the anisotropic composites from the hottest region (the front critical point) to the tail of the truncated cone. As a result, the vicinity of the front critical point is cooled and the tail of the cone is heated, with considerable decrease in the associated heat fluxes.</description><identifier>ISSN: 1068-798X</identifier><identifier>EISSN: 1934-8088</identifier><identifier>DOI: 10.3103/S1068798X24700904</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aerodynamic heating ; Anisotropy ; Composite materials ; Critical point ; Engineering ; Engineering Design ; Heat flux ; Heat transfer ; High speed ; Overheating ; Thermal conductivity</subject><ispartof>Russian engineering research, 2024, Vol.44 (5), p.705-708</ispartof><rights>Allerton Press, Inc. 2024. ISSN 1068-798X, Russian Engineering Research, 2024, Vol. 44, No. 5, pp. 705–708. © Allerton Press, Inc., 2024. Russian Text © The Author(s), 2024, published in STIN, 2024, No. 4, pp. 13–16.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1134-b0851a15989d8ea1e938987568b93b66ba92360d3357f8782e9b8ff8c37cd6c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068798X24700904$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068798X24700904$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Formalev, V. F.</creatorcontrib><creatorcontrib>Kolesnik, S. A.</creatorcontrib><creatorcontrib>Garibyan, B. A.</creatorcontrib><creatorcontrib>Pashkov, O. A.</creatorcontrib><creatorcontrib>Pegachkova, E. A.</creatorcontrib><title>New Approach to Preventing External Overheating of High-Speed Aircraft</title><title>Russian engineering research</title><addtitle>Russ. Engin. Res</addtitle><description>External overheating of high-speed aircraft may be prevented by means of composites with significant longitudinal anisotropy. (The longitudinal thermal conductivity is two orders of magnitude greater than the transverse thermal conductivity.) In this approach, the heat fluxes that result from aerodynamic heating are channeled within the anisotropic composites from the hottest region (the front critical point) to the tail of the truncated cone. As a result, the vicinity of the front critical point is cooled and the tail of the cone is heated, with considerable decrease in the associated heat fluxes.</description><subject>Aerodynamic heating</subject><subject>Anisotropy</subject><subject>Composite materials</subject><subject>Critical point</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>High speed</subject><subject>Overheating</subject><subject>Thermal conductivity</subject><issn>1068-798X</issn><issn>1934-8088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LwzAUDaLgnP4A3wI-V_OxNDePY2xOGE6Ygm8lbW-2jtnWpJvz35s5wQfx6R7u-eBwCLnm7FZyJu8WnKWgDbyKgWbMsMEJ6XEjBwkwgNOII50c-HNyEcKaMaWMUj0yecQPOmxb39hiRbuGPnncYd1V9ZKO9x362m7ofId-hfb72Tg6rZarZNEilnRY-cJb112SM2c3Aa9-bp-8TMbPo2kym98_jIazpOA8lskZKG65MmBKQMvRSDCgVQq5kXma5tYImbJSSqUdaBBocnAOCqmLMi2U7JObY24s_L7F0GXrZnvoGDLJtNBaMiGiih9VhW9C8Oiy1ldv1n9mnGWHubI_c0WPOHpC1NZL9L_J_5u-ANv0arg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Formalev, V. F.</creator><creator>Kolesnik, S. A.</creator><creator>Garibyan, B. A.</creator><creator>Pashkov, O. A.</creator><creator>Pegachkova, E. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>New Approach to Preventing External Overheating of High-Speed Aircraft</title><author>Formalev, V. F. ; Kolesnik, S. A. ; Garibyan, B. A. ; Pashkov, O. A. ; Pegachkova, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1134-b0851a15989d8ea1e938987568b93b66ba92360d3357f8782e9b8ff8c37cd6c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerodynamic heating</topic><topic>Anisotropy</topic><topic>Composite materials</topic><topic>Critical point</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>High speed</topic><topic>Overheating</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Formalev, V. F.</creatorcontrib><creatorcontrib>Kolesnik, S. A.</creatorcontrib><creatorcontrib>Garibyan, B. A.</creatorcontrib><creatorcontrib>Pashkov, O. A.</creatorcontrib><creatorcontrib>Pegachkova, E. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian engineering research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Formalev, V. F.</au><au>Kolesnik, S. A.</au><au>Garibyan, B. A.</au><au>Pashkov, O. A.</au><au>Pegachkova, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Approach to Preventing External Overheating of High-Speed Aircraft</atitle><jtitle>Russian engineering research</jtitle><stitle>Russ. Engin. Res</stitle><date>2024</date><risdate>2024</risdate><volume>44</volume><issue>5</issue><spage>705</spage><epage>708</epage><pages>705-708</pages><issn>1068-798X</issn><eissn>1934-8088</eissn><abstract>External overheating of high-speed aircraft may be prevented by means of composites with significant longitudinal anisotropy. (The longitudinal thermal conductivity is two orders of magnitude greater than the transverse thermal conductivity.) In this approach, the heat fluxes that result from aerodynamic heating are channeled within the anisotropic composites from the hottest region (the front critical point) to the tail of the truncated cone. As a result, the vicinity of the front critical point is cooled and the tail of the cone is heated, with considerable decrease in the associated heat fluxes.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068798X24700904</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-798X
ispartof Russian engineering research, 2024, Vol.44 (5), p.705-708
issn 1068-798X
1934-8088
language eng
recordid cdi_proquest_journals_3072773022
source SpringerLink Journals - AutoHoldings
subjects Aerodynamic heating
Anisotropy
Composite materials
Critical point
Engineering
Engineering Design
Heat flux
Heat transfer
High speed
Overheating
Thermal conductivity
title New Approach to Preventing External Overheating of High-Speed Aircraft
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Approach%20to%20Preventing%20External%20Overheating%20of%20High-Speed%20Aircraft&rft.jtitle=Russian%20engineering%20research&rft.au=Formalev,%20V.%20F.&rft.date=2024&rft.volume=44&rft.issue=5&rft.spage=705&rft.epage=708&rft.pages=705-708&rft.issn=1068-798X&rft.eissn=1934-8088&rft_id=info:doi/10.3103/S1068798X24700904&rft_dat=%3Cproquest_cross%3E3072773022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072773022&rft_id=info:pmid/&rfr_iscdi=true