Electrochemical Polishing Method for Titanium Alloys with a Microgroove Structure

TI–6AL–4V alloys are widely used in various fields owing to their excellent corrosion resistance, high-temperature resistance, and low-temperature toughness. Herein, a microgroove fixture was used to simulate the microgrooves in a titanium alloy with different aspect ratios to study the influence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-06, Vol.12 (6), p.1114
Hauptverfasser: Wang, Xu, Wang, Yekun, Shao, Xuanda, Zhou, Kaiyao, Deng, Qianfa, Yuan, Zewei, Lyu, Binghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1114
container_title Processes
container_volume 12
creator Wang, Xu
Wang, Yekun
Shao, Xuanda
Zhou, Kaiyao
Deng, Qianfa
Yuan, Zewei
Lyu, Binghai
description TI–6AL–4V alloys are widely used in various fields owing to their excellent corrosion resistance, high-temperature resistance, and low-temperature toughness. Herein, a microgroove fixture was used to simulate the microgrooves in a titanium alloy with different aspect ratios to study the influence of the electrolyte flow rate on the polishing effect. The optimization of the electrochemical polishing parameters was conducted using experiments and simulations. The effects of process parameters, such as the concentration of sodium chloride (NaCl) and zinc chloride (ZnCl2), polishing time, and processing voltage, on the quality of the post-polished surface were studied. Experiments were conducted on microgrooves with different aspect ratios under the optimized polishing process parameters. Changes in the surface elements of the microgrooves after polishing were detected. The experimental results indicated that the optimal electrochemical polishing solution flow rate, NaCl concentration, ZnCl2 concentration, polishing time, and processing voltage were 0.2 m/s, 4.0 wt.%, 0.4 wt.%, 8 min, and 90 V, respectively. After 8 min of electrochemical polishing, a TiO2 passivation film was formed on the surface of the microgroove. The surface roughness of the notch and bottom of the microgroove decreased from 250 nm to below 40 nm, with a minimum of 24.5 nm.
doi_str_mv 10.3390/pr12061114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072663808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072663808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-394bb02cb7c4cc6beba79a7803a2a6eb36def37f71a5a0693adb543be748ff833</originalsourceid><addsrcrecordid>eNpNUFFLwzAYDKLgmHvxFwR8E6pJvjZpH8eYTthQcT6XJE3WjG6ZSars31uZoPdy93DcHYfQNSV3ABW5PwTKCKeU5mdoxBgTWSWoOP-nL9Ekxi0ZUFEoCz5Cr_PO6BS8bs3OadnhF9-52Lr9Bq9Man2DrQ947ZLcu36Hp13njxF_udRiiVdOB78J3n8a_JZCr1MfzBW6sLKLZvLLY_T-MF_PFtny-fFpNl1mmhV5yqDKlSJMK6FzrbkySopKipKAZJIbBbwxFoQVVBaS8Apko4oclBF5aW0JMEY3p9xD8B-9iane-j7sh8oaiGCcQ0nKwXV7cg1LYwzG1ofgdjIca0rqn9fqv9fgGwtYYBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072663808</pqid></control><display><type>article</type><title>Electrochemical Polishing Method for Titanium Alloys with a Microgroove Structure</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Xu ; Wang, Yekun ; Shao, Xuanda ; Zhou, Kaiyao ; Deng, Qianfa ; Yuan, Zewei ; Lyu, Binghai</creator><creatorcontrib>Wang, Xu ; Wang, Yekun ; Shao, Xuanda ; Zhou, Kaiyao ; Deng, Qianfa ; Yuan, Zewei ; Lyu, Binghai</creatorcontrib><description>TI–6AL–4V alloys are widely used in various fields owing to their excellent corrosion resistance, high-temperature resistance, and low-temperature toughness. Herein, a microgroove fixture was used to simulate the microgrooves in a titanium alloy with different aspect ratios to study the influence of the electrolyte flow rate on the polishing effect. The optimization of the electrochemical polishing parameters was conducted using experiments and simulations. The effects of process parameters, such as the concentration of sodium chloride (NaCl) and zinc chloride (ZnCl2), polishing time, and processing voltage, on the quality of the post-polished surface were studied. Experiments were conducted on microgrooves with different aspect ratios under the optimized polishing process parameters. Changes in the surface elements of the microgrooves after polishing were detected. The experimental results indicated that the optimal electrochemical polishing solution flow rate, NaCl concentration, ZnCl2 concentration, polishing time, and processing voltage were 0.2 m/s, 4.0 wt.%, 0.4 wt.%, 8 min, and 90 V, respectively. After 8 min of electrochemical polishing, a TiO2 passivation film was formed on the surface of the microgroove. The surface roughness of the notch and bottom of the microgroove decreased from 250 nm to below 40 nm, with a minimum of 24.5 nm.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12061114</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloys ; Aspect ratio ; Chemical polishing ; Corrosion resistance ; Electric potential ; Electrodes ; Electrolytes ; Electropolishing ; Flow velocity ; High temperature ; Low temperature ; Low temperature resistance ; Morphology ; Process parameters ; Simulation ; Sodium channels (voltage-gated) ; Sodium chloride ; Surface roughness ; Titanium ; Titanium alloys ; Titanium base alloys ; Titanium dioxide ; Voltage ; Zinc chloride</subject><ispartof>Processes, 2024-06, Vol.12 (6), p.1114</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-394bb02cb7c4cc6beba79a7803a2a6eb36def37f71a5a0693adb543be748ff833</cites><orcidid>0009-0003-4087-0959 ; 0000-0002-1778-1064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Wang, Yekun</creatorcontrib><creatorcontrib>Shao, Xuanda</creatorcontrib><creatorcontrib>Zhou, Kaiyao</creatorcontrib><creatorcontrib>Deng, Qianfa</creatorcontrib><creatorcontrib>Yuan, Zewei</creatorcontrib><creatorcontrib>Lyu, Binghai</creatorcontrib><title>Electrochemical Polishing Method for Titanium Alloys with a Microgroove Structure</title><title>Processes</title><description>TI–6AL–4V alloys are widely used in various fields owing to their excellent corrosion resistance, high-temperature resistance, and low-temperature toughness. Herein, a microgroove fixture was used to simulate the microgrooves in a titanium alloy with different aspect ratios to study the influence of the electrolyte flow rate on the polishing effect. The optimization of the electrochemical polishing parameters was conducted using experiments and simulations. The effects of process parameters, such as the concentration of sodium chloride (NaCl) and zinc chloride (ZnCl2), polishing time, and processing voltage, on the quality of the post-polished surface were studied. Experiments were conducted on microgrooves with different aspect ratios under the optimized polishing process parameters. Changes in the surface elements of the microgrooves after polishing were detected. The experimental results indicated that the optimal electrochemical polishing solution flow rate, NaCl concentration, ZnCl2 concentration, polishing time, and processing voltage were 0.2 m/s, 4.0 wt.%, 0.4 wt.%, 8 min, and 90 V, respectively. After 8 min of electrochemical polishing, a TiO2 passivation film was formed on the surface of the microgroove. The surface roughness of the notch and bottom of the microgroove decreased from 250 nm to below 40 nm, with a minimum of 24.5 nm.</description><subject>Alloys</subject><subject>Aspect ratio</subject><subject>Chemical polishing</subject><subject>Corrosion resistance</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electropolishing</subject><subject>Flow velocity</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Low temperature resistance</subject><subject>Morphology</subject><subject>Process parameters</subject><subject>Simulation</subject><subject>Sodium channels (voltage-gated)</subject><subject>Sodium chloride</subject><subject>Surface roughness</subject><subject>Titanium</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Titanium dioxide</subject><subject>Voltage</subject><subject>Zinc chloride</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUFFLwzAYDKLgmHvxFwR8E6pJvjZpH8eYTthQcT6XJE3WjG6ZSars31uZoPdy93DcHYfQNSV3ABW5PwTKCKeU5mdoxBgTWSWoOP-nL9Ekxi0ZUFEoCz5Cr_PO6BS8bs3OadnhF9-52Lr9Bq9Man2DrQ947ZLcu36Hp13njxF_udRiiVdOB78J3n8a_JZCr1MfzBW6sLKLZvLLY_T-MF_PFtny-fFpNl1mmhV5yqDKlSJMK6FzrbkySopKipKAZJIbBbwxFoQVVBaS8Apko4oclBF5aW0JMEY3p9xD8B-9iane-j7sh8oaiGCcQ0nKwXV7cg1LYwzG1ofgdjIca0rqn9fqv9fgGwtYYBM</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Wang, Xu</creator><creator>Wang, Yekun</creator><creator>Shao, Xuanda</creator><creator>Zhou, Kaiyao</creator><creator>Deng, Qianfa</creator><creator>Yuan, Zewei</creator><creator>Lyu, Binghai</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0003-4087-0959</orcidid><orcidid>https://orcid.org/0000-0002-1778-1064</orcidid></search><sort><creationdate>20240601</creationdate><title>Electrochemical Polishing Method for Titanium Alloys with a Microgroove Structure</title><author>Wang, Xu ; Wang, Yekun ; Shao, Xuanda ; Zhou, Kaiyao ; Deng, Qianfa ; Yuan, Zewei ; Lyu, Binghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-394bb02cb7c4cc6beba79a7803a2a6eb36def37f71a5a0693adb543be748ff833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Aspect ratio</topic><topic>Chemical polishing</topic><topic>Corrosion resistance</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electropolishing</topic><topic>Flow velocity</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Low temperature resistance</topic><topic>Morphology</topic><topic>Process parameters</topic><topic>Simulation</topic><topic>Sodium channels (voltage-gated)</topic><topic>Sodium chloride</topic><topic>Surface roughness</topic><topic>Titanium</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Titanium dioxide</topic><topic>Voltage</topic><topic>Zinc chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Wang, Yekun</creatorcontrib><creatorcontrib>Shao, Xuanda</creatorcontrib><creatorcontrib>Zhou, Kaiyao</creatorcontrib><creatorcontrib>Deng, Qianfa</creatorcontrib><creatorcontrib>Yuan, Zewei</creatorcontrib><creatorcontrib>Lyu, Binghai</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xu</au><au>Wang, Yekun</au><au>Shao, Xuanda</au><au>Zhou, Kaiyao</au><au>Deng, Qianfa</au><au>Yuan, Zewei</au><au>Lyu, Binghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Polishing Method for Titanium Alloys with a Microgroove Structure</atitle><jtitle>Processes</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>12</volume><issue>6</issue><spage>1114</spage><pages>1114-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>TI–6AL–4V alloys are widely used in various fields owing to their excellent corrosion resistance, high-temperature resistance, and low-temperature toughness. Herein, a microgroove fixture was used to simulate the microgrooves in a titanium alloy with different aspect ratios to study the influence of the electrolyte flow rate on the polishing effect. The optimization of the electrochemical polishing parameters was conducted using experiments and simulations. The effects of process parameters, such as the concentration of sodium chloride (NaCl) and zinc chloride (ZnCl2), polishing time, and processing voltage, on the quality of the post-polished surface were studied. Experiments were conducted on microgrooves with different aspect ratios under the optimized polishing process parameters. Changes in the surface elements of the microgrooves after polishing were detected. The experimental results indicated that the optimal electrochemical polishing solution flow rate, NaCl concentration, ZnCl2 concentration, polishing time, and processing voltage were 0.2 m/s, 4.0 wt.%, 0.4 wt.%, 8 min, and 90 V, respectively. After 8 min of electrochemical polishing, a TiO2 passivation film was formed on the surface of the microgroove. The surface roughness of the notch and bottom of the microgroove decreased from 250 nm to below 40 nm, with a minimum of 24.5 nm.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12061114</doi><orcidid>https://orcid.org/0009-0003-4087-0959</orcidid><orcidid>https://orcid.org/0000-0002-1778-1064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2024-06, Vol.12 (6), p.1114
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_3072663808
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Alloys
Aspect ratio
Chemical polishing
Corrosion resistance
Electric potential
Electrodes
Electrolytes
Electropolishing
Flow velocity
High temperature
Low temperature
Low temperature resistance
Morphology
Process parameters
Simulation
Sodium channels (voltage-gated)
Sodium chloride
Surface roughness
Titanium
Titanium alloys
Titanium base alloys
Titanium dioxide
Voltage
Zinc chloride
title Electrochemical Polishing Method for Titanium Alloys with a Microgroove Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Polishing%20Method%20for%20Titanium%20Alloys%20with%20a%20Microgroove%20Structure&rft.jtitle=Processes&rft.au=Wang,%20Xu&rft.date=2024-06-01&rft.volume=12&rft.issue=6&rft.spage=1114&rft.pages=1114-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12061114&rft_dat=%3Cproquest_cross%3E3072663808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072663808&rft_id=info:pmid/&rfr_iscdi=true