SHDB-AF: a Japanese Holter ECG database of atrial fibrillation
Atrial fibrillation (AF) is a common atrial arrhythmia that impairs quality of life and causes embolic stroke, heart failure and other complications. Recent advancements in machine learning (ML) and deep learning (DL) have shown potential for enhancing diagnostic accuracy. It is essential for DL mod...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tsutsui, Kenta Brimer, Shany Biton Ben-Moshe, Noam Sellal, Jean Marc Oster, Julien Mori, Hitoshi Ikeda, Yoshifumi Arai, Takahide Nakano, Shintaro Kato, Ritsushi Behar, Joachim A |
description | Atrial fibrillation (AF) is a common atrial arrhythmia that impairs quality of life and causes embolic stroke, heart failure and other complications. Recent advancements in machine learning (ML) and deep learning (DL) have shown potential for enhancing diagnostic accuracy. It is essential for DL models to be robust and generalizable across variations in ethnicity, age, sex, and other factors. Although a number of ECG database have been made available to the research community, none includes a Japanese population sample. Saitama Heart Database Atrial Fibrillation (SHDB-AF) is a novel open-sourced Holter ECG database from Japan, containing data from 100 unique patients with paroxysmal AF. Each record in SHDB-AF is 24 hours long and sampled at 200 Hz, totaling 24 million seconds of ECG data. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3072359518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072359518</sourcerecordid><originalsourceid>FETCH-proquest_journals_30723595183</originalsourceid><addsrcrecordid>eNqNikELgjAYQEcQJOV_-KCzMLeW1iEo04bXussnTZiMzbb5__PQD-j04L23IgnjPM_KA2MbkoYwUkrZsWBC8IRcnvJ-y67NGRBanNCqoEA6E5WHunrAGyP2uDg3AEav0cCge6-Nwaid3ZH1gCao9Mct2Tf1q5LZ5N1nViF2o5u9XVLHacG4OIm85P9dX6amNnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072359518</pqid></control><display><type>article</type><title>SHDB-AF: a Japanese Holter ECG database of atrial fibrillation</title><source>Free E- Journals</source><creator>Tsutsui, Kenta ; Brimer, Shany Biton ; Ben-Moshe, Noam ; Sellal, Jean Marc ; Oster, Julien ; Mori, Hitoshi ; Ikeda, Yoshifumi ; Arai, Takahide ; Nakano, Shintaro ; Kato, Ritsushi ; Behar, Joachim A</creator><creatorcontrib>Tsutsui, Kenta ; Brimer, Shany Biton ; Ben-Moshe, Noam ; Sellal, Jean Marc ; Oster, Julien ; Mori, Hitoshi ; Ikeda, Yoshifumi ; Arai, Takahide ; Nakano, Shintaro ; Kato, Ritsushi ; Behar, Joachim A</creatorcontrib><description>Atrial fibrillation (AF) is a common atrial arrhythmia that impairs quality of life and causes embolic stroke, heart failure and other complications. Recent advancements in machine learning (ML) and deep learning (DL) have shown potential for enhancing diagnostic accuracy. It is essential for DL models to be robust and generalizable across variations in ethnicity, age, sex, and other factors. Although a number of ECG database have been made available to the research community, none includes a Japanese population sample. Saitama Heart Database Atrial Fibrillation (SHDB-AF) is a novel open-sourced Holter ECG database from Japan, containing data from 100 unique patients with paroxysmal AF. Each record in SHDB-AF is 24 hours long and sampled at 200 Hz, totaling 24 million seconds of ECG data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deep learning ; Fibrillation ; Machine learning</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Tsutsui, Kenta</creatorcontrib><creatorcontrib>Brimer, Shany Biton</creatorcontrib><creatorcontrib>Ben-Moshe, Noam</creatorcontrib><creatorcontrib>Sellal, Jean Marc</creatorcontrib><creatorcontrib>Oster, Julien</creatorcontrib><creatorcontrib>Mori, Hitoshi</creatorcontrib><creatorcontrib>Ikeda, Yoshifumi</creatorcontrib><creatorcontrib>Arai, Takahide</creatorcontrib><creatorcontrib>Nakano, Shintaro</creatorcontrib><creatorcontrib>Kato, Ritsushi</creatorcontrib><creatorcontrib>Behar, Joachim A</creatorcontrib><title>SHDB-AF: a Japanese Holter ECG database of atrial fibrillation</title><title>arXiv.org</title><description>Atrial fibrillation (AF) is a common atrial arrhythmia that impairs quality of life and causes embolic stroke, heart failure and other complications. Recent advancements in machine learning (ML) and deep learning (DL) have shown potential for enhancing diagnostic accuracy. It is essential for DL models to be robust and generalizable across variations in ethnicity, age, sex, and other factors. Although a number of ECG database have been made available to the research community, none includes a Japanese population sample. Saitama Heart Database Atrial Fibrillation (SHDB-AF) is a novel open-sourced Holter ECG database from Japan, containing data from 100 unique patients with paroxysmal AF. Each record in SHDB-AF is 24 hours long and sampled at 200 Hz, totaling 24 million seconds of ECG data.</description><subject>Deep learning</subject><subject>Fibrillation</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikELgjAYQEcQJOV_-KCzMLeW1iEo04bXussnTZiMzbb5__PQD-j04L23IgnjPM_KA2MbkoYwUkrZsWBC8IRcnvJ-y67NGRBanNCqoEA6E5WHunrAGyP2uDg3AEav0cCge6-Nwaid3ZH1gCao9Mct2Tf1q5LZ5N1nViF2o5u9XVLHacG4OIm85P9dX6amNnM</recordid><startdate>20240622</startdate><enddate>20240622</enddate><creator>Tsutsui, Kenta</creator><creator>Brimer, Shany Biton</creator><creator>Ben-Moshe, Noam</creator><creator>Sellal, Jean Marc</creator><creator>Oster, Julien</creator><creator>Mori, Hitoshi</creator><creator>Ikeda, Yoshifumi</creator><creator>Arai, Takahide</creator><creator>Nakano, Shintaro</creator><creator>Kato, Ritsushi</creator><creator>Behar, Joachim A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240622</creationdate><title>SHDB-AF: a Japanese Holter ECG database of atrial fibrillation</title><author>Tsutsui, Kenta ; Brimer, Shany Biton ; Ben-Moshe, Noam ; Sellal, Jean Marc ; Oster, Julien ; Mori, Hitoshi ; Ikeda, Yoshifumi ; Arai, Takahide ; Nakano, Shintaro ; Kato, Ritsushi ; Behar, Joachim A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30723595183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Fibrillation</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsutsui, Kenta</creatorcontrib><creatorcontrib>Brimer, Shany Biton</creatorcontrib><creatorcontrib>Ben-Moshe, Noam</creatorcontrib><creatorcontrib>Sellal, Jean Marc</creatorcontrib><creatorcontrib>Oster, Julien</creatorcontrib><creatorcontrib>Mori, Hitoshi</creatorcontrib><creatorcontrib>Ikeda, Yoshifumi</creatorcontrib><creatorcontrib>Arai, Takahide</creatorcontrib><creatorcontrib>Nakano, Shintaro</creatorcontrib><creatorcontrib>Kato, Ritsushi</creatorcontrib><creatorcontrib>Behar, Joachim A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsutsui, Kenta</au><au>Brimer, Shany Biton</au><au>Ben-Moshe, Noam</au><au>Sellal, Jean Marc</au><au>Oster, Julien</au><au>Mori, Hitoshi</au><au>Ikeda, Yoshifumi</au><au>Arai, Takahide</au><au>Nakano, Shintaro</au><au>Kato, Ritsushi</au><au>Behar, Joachim A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SHDB-AF: a Japanese Holter ECG database of atrial fibrillation</atitle><jtitle>arXiv.org</jtitle><date>2024-06-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Atrial fibrillation (AF) is a common atrial arrhythmia that impairs quality of life and causes embolic stroke, heart failure and other complications. Recent advancements in machine learning (ML) and deep learning (DL) have shown potential for enhancing diagnostic accuracy. It is essential for DL models to be robust and generalizable across variations in ethnicity, age, sex, and other factors. Although a number of ECG database have been made available to the research community, none includes a Japanese population sample. Saitama Heart Database Atrial Fibrillation (SHDB-AF) is a novel open-sourced Holter ECG database from Japan, containing data from 100 unique patients with paroxysmal AF. Each record in SHDB-AF is 24 hours long and sampled at 200 Hz, totaling 24 million seconds of ECG data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3072359518 |
source | Free E- Journals |
subjects | Deep learning Fibrillation Machine learning |
title | SHDB-AF: a Japanese Holter ECG database of atrial fibrillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SHDB-AF:%20a%20Japanese%20Holter%20ECG%20database%20of%20atrial%20fibrillation&rft.jtitle=arXiv.org&rft.au=Tsutsui,%20Kenta&rft.date=2024-06-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3072359518%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072359518&rft_id=info:pmid/&rfr_iscdi=true |