Optimizing machine learning for space weather forecasting and event classification using modified metaheuristics

Space weather profoundly impacts Earth and its surrounding space environment, necessitating improved prediction to safeguard critical infrastructure such as communication and satellites. Solar flares can disrupt communications and pose radiation risks to airline passengers. While traditional methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2024-04, Vol.28 (7-8), p.6383-6402
Hauptverfasser: Jovanovic, Luka, Bacanin, Nebojsa, Simic, Vladimir, Mani, Joseph, Zivkovic, Miodrag, Sarac, Marko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6402
container_issue 7-8
container_start_page 6383
container_title Soft computing (Berlin, Germany)
container_volume 28
creator Jovanovic, Luka
Bacanin, Nebojsa
Simic, Vladimir
Mani, Joseph
Zivkovic, Miodrag
Sarac, Marko
description Space weather profoundly impacts Earth and its surrounding space environment, necessitating improved prediction to safeguard critical infrastructure such as communication and satellites. Solar flares can disrupt communications and pose radiation risks to airline passengers. While traditional methods offer rough estimates of solar activity trends, the potential of artificial intelligence in this domain warrants exploration. This study addresses this research gap by evaluating the performance of recurrent neural networks (RNNs) for sunspot forecasting and assessing the suitability of extreme gradient boosting (XGBoost) for solar event classification. Two publicly available datasets serve as the foundation for this research. To enhance algorithm performance through optimal hyperparameter selection, metaheuristic optimizers are employed. A unique contribution is the introduction of a modified particle swarm optimization algorithm, specifically tailored to the study’s needs. Two experiments were conducted: In the first, RNNs predicted sunspot occurrence up to three steps ahead. The best-performing model, optimized using the introduced modified metaheuristic, achieved an impressive R 2 value of 0.840448, surpassing competing algorithms. In the second experiment, XGBoost models assessed solar flare severity, with the top model again optimized by the modified metaheuristic, achieving an accuracy of 0.981565. This novel approach highlights the potential for enhancing solar activity forecasting techniques and offers valuable insights into feature impacts on model decisions, thereby advancing our understanding of space weather.
doi_str_mv 10.1007/s00500-023-09496-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072356880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072356880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3f1f6cb21c595faada9bba7827e312bcd7eecb956ed2a693ea5868a86a5093903</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54CnqNp0ibNURa_YGEveg7TdLqbZfth0ir619tuBW-eZnjz3hv4EXKd8NuEc30XOc84Z1xIxk1qFDMnZJGkUjKdanN63AXTKpXn5CLGPeci0ZlckG7T9b72377Z0hrczjdIDwihmYSqDTR24JB-IvQ7DJOCDmI_XaEpKX5g01N3gBh95R30vm3oEI9tbTlKWNIae9jhEPwYc_GSnFVwiHj1O5fk7fHhdfXM1punl9X9mjmhec9klVTKFSJxmckqgBJMUYDOhUaZiMKVGtEVJlNYClBGImS5yiFXkHEjDZdLcjP3dqF9HzD2dt8OoRlfWsm1kJnK88klZpcLbYwBK9sFX0P4sgm3E1k7k7UjWXska80YknMojuZmi-Gv-p_UD95Ufvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072356880</pqid></control><display><type>article</type><title>Optimizing machine learning for space weather forecasting and event classification using modified metaheuristics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jovanovic, Luka ; Bacanin, Nebojsa ; Simic, Vladimir ; Mani, Joseph ; Zivkovic, Miodrag ; Sarac, Marko</creator><creatorcontrib>Jovanovic, Luka ; Bacanin, Nebojsa ; Simic, Vladimir ; Mani, Joseph ; Zivkovic, Miodrag ; Sarac, Marko</creatorcontrib><description>Space weather profoundly impacts Earth and its surrounding space environment, necessitating improved prediction to safeguard critical infrastructure such as communication and satellites. Solar flares can disrupt communications and pose radiation risks to airline passengers. While traditional methods offer rough estimates of solar activity trends, the potential of artificial intelligence in this domain warrants exploration. This study addresses this research gap by evaluating the performance of recurrent neural networks (RNNs) for sunspot forecasting and assessing the suitability of extreme gradient boosting (XGBoost) for solar event classification. Two publicly available datasets serve as the foundation for this research. To enhance algorithm performance through optimal hyperparameter selection, metaheuristic optimizers are employed. A unique contribution is the introduction of a modified particle swarm optimization algorithm, specifically tailored to the study’s needs. Two experiments were conducted: In the first, RNNs predicted sunspot occurrence up to three steps ahead. The best-performing model, optimized using the introduced modified metaheuristic, achieved an impressive R 2 value of 0.840448, surpassing competing algorithms. In the second experiment, XGBoost models assessed solar flare severity, with the top model again optimized by the modified metaheuristic, achieving an accuracy of 0.981565. This novel approach highlights the potential for enhancing solar activity forecasting techniques and offers valuable insights into feature impacts on model decisions, thereby advancing our understanding of space weather.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-023-09496-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aerospace environments ; Algorithms ; Application of Soft Computing ; Artificial Intelligence ; Classification ; Computational Intelligence ; Control ; Critical infrastructure ; Decision making ; Deep learning ; Engineering ; Forecasting ; Heuristic methods ; Infrastructure ; Machine learning ; Mathematical Logic and Foundations ; Mechatronics ; Neural networks ; Observatories ; Particle swarm optimization ; Performance evaluation ; Recurrent neural networks ; Robotics ; Satellites ; Solar activity ; Solar cycle ; Solar flares ; Space weather ; Sunspots ; Supply chains ; Weather forecasting</subject><ispartof>Soft computing (Berlin, Germany), 2024-04, Vol.28 (7-8), p.6383-6402</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3f1f6cb21c595faada9bba7827e312bcd7eecb956ed2a693ea5868a86a5093903</cites><orcidid>0000-0002-2062-924X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-023-09496-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00500-023-09496-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jovanovic, Luka</creatorcontrib><creatorcontrib>Bacanin, Nebojsa</creatorcontrib><creatorcontrib>Simic, Vladimir</creatorcontrib><creatorcontrib>Mani, Joseph</creatorcontrib><creatorcontrib>Zivkovic, Miodrag</creatorcontrib><creatorcontrib>Sarac, Marko</creatorcontrib><title>Optimizing machine learning for space weather forecasting and event classification using modified metaheuristics</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>Space weather profoundly impacts Earth and its surrounding space environment, necessitating improved prediction to safeguard critical infrastructure such as communication and satellites. Solar flares can disrupt communications and pose radiation risks to airline passengers. While traditional methods offer rough estimates of solar activity trends, the potential of artificial intelligence in this domain warrants exploration. This study addresses this research gap by evaluating the performance of recurrent neural networks (RNNs) for sunspot forecasting and assessing the suitability of extreme gradient boosting (XGBoost) for solar event classification. Two publicly available datasets serve as the foundation for this research. To enhance algorithm performance through optimal hyperparameter selection, metaheuristic optimizers are employed. A unique contribution is the introduction of a modified particle swarm optimization algorithm, specifically tailored to the study’s needs. Two experiments were conducted: In the first, RNNs predicted sunspot occurrence up to three steps ahead. The best-performing model, optimized using the introduced modified metaheuristic, achieved an impressive R 2 value of 0.840448, surpassing competing algorithms. In the second experiment, XGBoost models assessed solar flare severity, with the top model again optimized by the modified metaheuristic, achieving an accuracy of 0.981565. This novel approach highlights the potential for enhancing solar activity forecasting techniques and offers valuable insights into feature impacts on model decisions, thereby advancing our understanding of space weather.</description><subject>Aerospace environments</subject><subject>Algorithms</subject><subject>Application of Soft Computing</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Critical infrastructure</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Forecasting</subject><subject>Heuristic methods</subject><subject>Infrastructure</subject><subject>Machine learning</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Observatories</subject><subject>Particle swarm optimization</subject><subject>Performance evaluation</subject><subject>Recurrent neural networks</subject><subject>Robotics</subject><subject>Satellites</subject><subject>Solar activity</subject><subject>Solar cycle</subject><subject>Solar flares</subject><subject>Space weather</subject><subject>Sunspots</subject><subject>Supply chains</subject><subject>Weather forecasting</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-A54CnqNp0ibNURa_YGEveg7TdLqbZfth0ir619tuBW-eZnjz3hv4EXKd8NuEc30XOc84Z1xIxk1qFDMnZJGkUjKdanN63AXTKpXn5CLGPeci0ZlckG7T9b72377Z0hrczjdIDwihmYSqDTR24JB-IvQ7DJOCDmI_XaEpKX5g01N3gBh95R30vm3oEI9tbTlKWNIae9jhEPwYc_GSnFVwiHj1O5fk7fHhdfXM1punl9X9mjmhec9klVTKFSJxmckqgBJMUYDOhUaZiMKVGtEVJlNYClBGImS5yiFXkHEjDZdLcjP3dqF9HzD2dt8OoRlfWsm1kJnK88klZpcLbYwBK9sFX0P4sgm3E1k7k7UjWXska80YknMojuZmi-Gv-p_UD95Ufvc</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Jovanovic, Luka</creator><creator>Bacanin, Nebojsa</creator><creator>Simic, Vladimir</creator><creator>Mani, Joseph</creator><creator>Zivkovic, Miodrag</creator><creator>Sarac, Marko</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2062-924X</orcidid></search><sort><creationdate>20240401</creationdate><title>Optimizing machine learning for space weather forecasting and event classification using modified metaheuristics</title><author>Jovanovic, Luka ; Bacanin, Nebojsa ; Simic, Vladimir ; Mani, Joseph ; Zivkovic, Miodrag ; Sarac, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3f1f6cb21c595faada9bba7827e312bcd7eecb956ed2a693ea5868a86a5093903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace environments</topic><topic>Algorithms</topic><topic>Application of Soft Computing</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Critical infrastructure</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Forecasting</topic><topic>Heuristic methods</topic><topic>Infrastructure</topic><topic>Machine learning</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Observatories</topic><topic>Particle swarm optimization</topic><topic>Performance evaluation</topic><topic>Recurrent neural networks</topic><topic>Robotics</topic><topic>Satellites</topic><topic>Solar activity</topic><topic>Solar cycle</topic><topic>Solar flares</topic><topic>Space weather</topic><topic>Sunspots</topic><topic>Supply chains</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jovanovic, Luka</creatorcontrib><creatorcontrib>Bacanin, Nebojsa</creatorcontrib><creatorcontrib>Simic, Vladimir</creatorcontrib><creatorcontrib>Mani, Joseph</creatorcontrib><creatorcontrib>Zivkovic, Miodrag</creatorcontrib><creatorcontrib>Sarac, Marko</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jovanovic, Luka</au><au>Bacanin, Nebojsa</au><au>Simic, Vladimir</au><au>Mani, Joseph</au><au>Zivkovic, Miodrag</au><au>Sarac, Marko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing machine learning for space weather forecasting and event classification using modified metaheuristics</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>28</volume><issue>7-8</issue><spage>6383</spage><epage>6402</epage><pages>6383-6402</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>Space weather profoundly impacts Earth and its surrounding space environment, necessitating improved prediction to safeguard critical infrastructure such as communication and satellites. Solar flares can disrupt communications and pose radiation risks to airline passengers. While traditional methods offer rough estimates of solar activity trends, the potential of artificial intelligence in this domain warrants exploration. This study addresses this research gap by evaluating the performance of recurrent neural networks (RNNs) for sunspot forecasting and assessing the suitability of extreme gradient boosting (XGBoost) for solar event classification. Two publicly available datasets serve as the foundation for this research. To enhance algorithm performance through optimal hyperparameter selection, metaheuristic optimizers are employed. A unique contribution is the introduction of a modified particle swarm optimization algorithm, specifically tailored to the study’s needs. Two experiments were conducted: In the first, RNNs predicted sunspot occurrence up to three steps ahead. The best-performing model, optimized using the introduced modified metaheuristic, achieved an impressive R 2 value of 0.840448, surpassing competing algorithms. In the second experiment, XGBoost models assessed solar flare severity, with the top model again optimized by the modified metaheuristic, achieving an accuracy of 0.981565. This novel approach highlights the potential for enhancing solar activity forecasting techniques and offers valuable insights into feature impacts on model decisions, thereby advancing our understanding of space weather.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-023-09496-9</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2062-924X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2024-04, Vol.28 (7-8), p.6383-6402
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_3072356880
source SpringerLink Journals - AutoHoldings
subjects Aerospace environments
Algorithms
Application of Soft Computing
Artificial Intelligence
Classification
Computational Intelligence
Control
Critical infrastructure
Decision making
Deep learning
Engineering
Forecasting
Heuristic methods
Infrastructure
Machine learning
Mathematical Logic and Foundations
Mechatronics
Neural networks
Observatories
Particle swarm optimization
Performance evaluation
Recurrent neural networks
Robotics
Satellites
Solar activity
Solar cycle
Solar flares
Space weather
Sunspots
Supply chains
Weather forecasting
title Optimizing machine learning for space weather forecasting and event classification using modified metaheuristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20machine%20learning%20for%20space%20weather%20forecasting%20and%20event%20classification%20using%20modified%20metaheuristics&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Jovanovic,%20Luka&rft.date=2024-04-01&rft.volume=28&rft.issue=7-8&rft.spage=6383&rft.epage=6402&rft.pages=6383-6402&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-023-09496-9&rft_dat=%3Cproquest_cross%3E3072356880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072356880&rft_id=info:pmid/&rfr_iscdi=true