2-distance 20-coloring of planar graphs with maximum degree 6

A 2-distance \(k\)-coloring of a graph \(G\) is a proper \(k\)-coloring such that any two vertices at distance two or less get different colors. The 2-distance chromatic number of \(G\) is the minimum \(k\) such that \(G\) has a 2-distance \(k\)-coloring, denoted by \(\chi_2(G)\). In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
1. Verfasser: Aoki, Kengo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 2-distance \(k\)-coloring of a graph \(G\) is a proper \(k\)-coloring such that any two vertices at distance two or less get different colors. The 2-distance chromatic number of \(G\) is the minimum \(k\) such that \(G\) has a 2-distance \(k\)-coloring, denoted by \(\chi_2(G)\). In this paper, we show that \(\chi_2(G) \leq 20\) for every planar graph \(G\) with maximum degree at most six, which improves a former bound \(\chi_2(G) \leq 21\).
ISSN:2331-8422