Design and Analysis of Four-Port MIMO System Optimization Methodology with Machine Learning Approaches of Validated Antenna Parameters
A four-element MIMO array antenna for the generation of 5G cellphones to operate at lower sub-6 GHz systems and which is optimized using the current design approach. For acceptable performance related to the optimum design parameters EM simulations are performed instead of traditional optimizations...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2024-05, Vol.136 (1), p.213-232 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 232 |
---|---|
container_issue | 1 |
container_start_page | 213 |
container_title | Wireless personal communications |
container_volume | 136 |
creator | Babu, K. Vasu Sree, Gorre Naga Jyothi |
description | A four-element MIMO array antenna for the generation of 5G cellphones to operate at lower sub-6 GHz systems and which is optimized using the current design approach. For acceptable performance related to the optimum design parameters EM simulations are performed instead of traditional optimizations method due to time-consuming process for antenna design. Depending on the nonlinear relationship and complexity for design characteristics an effective method of deep learning (DL) is to determining optimum physical parameters. For designing of the MIMO antenna array this technique proposes resource efficient and time using DL approach. To reduce design space and generation of an effective dataset the technique applied is feature reduction method. To predict the S-parameters developing a novel dual-channel deep neural network. The designed antenna is optimized and achieved the − 10 dB impedance bandwidth of 40% (2.8–4.2 GHz), ECC is 0.018, TARC value is − 22 dB, isolation is − 35 dB, mean effective gain ratio is approaches to unity and CCL is 0.32 bps/Hz. |
doi_str_mv | 10.1007/s11277-024-11254-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072276314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072276314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5b2b0c3d930ea6f43fd7bd7cf52fb70b26a9b1985d466e769f187de3f42078e33</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWKsv4FXA62h-djfdy6JWhZYW_MG7kN2dtJE2qUmK1AfwuU2t4J1XMwznnJn5EDpn9JJRKq8iY1xKQnlBclcWpDxAPVZKTgaieD1EPVrzmlSc8WN0EuMbpdlW8x76uoFo5w5r1-Gh08tttBF7g0d-E8jMh4QnD5MpftzGBCs8XSe7sp86We_wBNLCd37p51v8YdMCT3S7sA7wGHRw1s3xcL0OPg_hJ_JFL22nE-wWJXBO45kOegUJQjxFR0YvI5z91j56Ht0-Xd-T8fTu4Xo4Ji2nNJGy4Q1tRVcLCroyhTCdbDrZmpKbRtKGV7puWD0ou6KqQFa1YQPZgTAFp3IAQvTRxT43H_a-gZjUW340_x2VoJJzWQlWZBXfq9rgYwxg1DrYlQ5bxaja8VZ73irzVj-8VZlNYm-KWezmEP6i_3F9AyifhKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072276314</pqid></control><display><type>article</type><title>Design and Analysis of Four-Port MIMO System Optimization Methodology with Machine Learning Approaches of Validated Antenna Parameters</title><source>SpringerLink Journals</source><creator>Babu, K. Vasu ; Sree, Gorre Naga Jyothi</creator><creatorcontrib>Babu, K. Vasu ; Sree, Gorre Naga Jyothi</creatorcontrib><description>A four-element MIMO array antenna for the generation of 5G cellphones to operate at lower sub-6 GHz systems and which is optimized using the current design approach. For acceptable performance related to the optimum design parameters EM simulations are performed instead of traditional optimizations method due to time-consuming process for antenna design. Depending on the nonlinear relationship and complexity for design characteristics an effective method of deep learning (DL) is to determining optimum physical parameters. For designing of the MIMO antenna array this technique proposes resource efficient and time using DL approach. To reduce design space and generation of an effective dataset the technique applied is feature reduction method. To predict the S-parameters developing a novel dual-channel deep neural network. The designed antenna is optimized and achieved the − 10 dB impedance bandwidth of 40% (2.8–4.2 GHz), ECC is 0.018, TARC value is − 22 dB, isolation is − 35 dB, mean effective gain ratio is approaches to unity and CCL is 0.32 bps/Hz.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-024-11254-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acceptable noise levels ; Antenna arrays ; Antenna design ; Antennas ; Artificial neural networks ; Communications Engineering ; Computer Communication Networks ; Deep learning ; Design parameters ; Engineering ; Machine learning ; MIMO communication ; Networks ; Physical properties ; Signal,Image and Speech Processing</subject><ispartof>Wireless personal communications, 2024-05, Vol.136 (1), p.213-232</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-5b2b0c3d930ea6f43fd7bd7cf52fb70b26a9b1985d466e769f187de3f42078e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-024-11254-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-024-11254-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Babu, K. Vasu</creatorcontrib><creatorcontrib>Sree, Gorre Naga Jyothi</creatorcontrib><title>Design and Analysis of Four-Port MIMO System Optimization Methodology with Machine Learning Approaches of Validated Antenna Parameters</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>A four-element MIMO array antenna for the generation of 5G cellphones to operate at lower sub-6 GHz systems and which is optimized using the current design approach. For acceptable performance related to the optimum design parameters EM simulations are performed instead of traditional optimizations method due to time-consuming process for antenna design. Depending on the nonlinear relationship and complexity for design characteristics an effective method of deep learning (DL) is to determining optimum physical parameters. For designing of the MIMO antenna array this technique proposes resource efficient and time using DL approach. To reduce design space and generation of an effective dataset the technique applied is feature reduction method. To predict the S-parameters developing a novel dual-channel deep neural network. The designed antenna is optimized and achieved the − 10 dB impedance bandwidth of 40% (2.8–4.2 GHz), ECC is 0.018, TARC value is − 22 dB, isolation is − 35 dB, mean effective gain ratio is approaches to unity and CCL is 0.32 bps/Hz.</description><subject>Acceptable noise levels</subject><subject>Antenna arrays</subject><subject>Antenna design</subject><subject>Antennas</subject><subject>Artificial neural networks</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Deep learning</subject><subject>Design parameters</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>MIMO communication</subject><subject>Networks</subject><subject>Physical properties</subject><subject>Signal,Image and Speech Processing</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMoWKsv4FXA62h-djfdy6JWhZYW_MG7kN2dtJE2qUmK1AfwuU2t4J1XMwznnJn5EDpn9JJRKq8iY1xKQnlBclcWpDxAPVZKTgaieD1EPVrzmlSc8WN0EuMbpdlW8x76uoFo5w5r1-Gh08tttBF7g0d-E8jMh4QnD5MpftzGBCs8XSe7sp86We_wBNLCd37p51v8YdMCT3S7sA7wGHRw1s3xcL0OPg_hJ_JFL22nE-wWJXBO45kOegUJQjxFR0YvI5z91j56Ht0-Xd-T8fTu4Xo4Ji2nNJGy4Q1tRVcLCroyhTCdbDrZmpKbRtKGV7puWD0ou6KqQFa1YQPZgTAFp3IAQvTRxT43H_a-gZjUW340_x2VoJJzWQlWZBXfq9rgYwxg1DrYlQ5bxaja8VZ73irzVj-8VZlNYm-KWezmEP6i_3F9AyifhKw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Babu, K. Vasu</creator><creator>Sree, Gorre Naga Jyothi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>Design and Analysis of Four-Port MIMO System Optimization Methodology with Machine Learning Approaches of Validated Antenna Parameters</title><author>Babu, K. Vasu ; Sree, Gorre Naga Jyothi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5b2b0c3d930ea6f43fd7bd7cf52fb70b26a9b1985d466e769f187de3f42078e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acceptable noise levels</topic><topic>Antenna arrays</topic><topic>Antenna design</topic><topic>Antennas</topic><topic>Artificial neural networks</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Deep learning</topic><topic>Design parameters</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>MIMO communication</topic><topic>Networks</topic><topic>Physical properties</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babu, K. Vasu</creatorcontrib><creatorcontrib>Sree, Gorre Naga Jyothi</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babu, K. Vasu</au><au>Sree, Gorre Naga Jyothi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of Four-Port MIMO System Optimization Methodology with Machine Learning Approaches of Validated Antenna Parameters</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>136</volume><issue>1</issue><spage>213</spage><epage>232</epage><pages>213-232</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>A four-element MIMO array antenna for the generation of 5G cellphones to operate at lower sub-6 GHz systems and which is optimized using the current design approach. For acceptable performance related to the optimum design parameters EM simulations are performed instead of traditional optimizations method due to time-consuming process for antenna design. Depending on the nonlinear relationship and complexity for design characteristics an effective method of deep learning (DL) is to determining optimum physical parameters. For designing of the MIMO antenna array this technique proposes resource efficient and time using DL approach. To reduce design space and generation of an effective dataset the technique applied is feature reduction method. To predict the S-parameters developing a novel dual-channel deep neural network. The designed antenna is optimized and achieved the − 10 dB impedance bandwidth of 40% (2.8–4.2 GHz), ECC is 0.018, TARC value is − 22 dB, isolation is − 35 dB, mean effective gain ratio is approaches to unity and CCL is 0.32 bps/Hz.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-024-11254-5</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2024-05, Vol.136 (1), p.213-232 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_3072276314 |
source | SpringerLink Journals |
subjects | Acceptable noise levels Antenna arrays Antenna design Antennas Artificial neural networks Communications Engineering Computer Communication Networks Deep learning Design parameters Engineering Machine learning MIMO communication Networks Physical properties Signal,Image and Speech Processing |
title | Design and Analysis of Four-Port MIMO System Optimization Methodology with Machine Learning Approaches of Validated Antenna Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20Four-Port%20MIMO%20System%20Optimization%20Methodology%20with%20Machine%20Learning%20Approaches%20of%20Validated%20Antenna%20Parameters&rft.jtitle=Wireless%20personal%20communications&rft.au=Babu,%20K.%20Vasu&rft.date=2024-05-01&rft.volume=136&rft.issue=1&rft.spage=213&rft.epage=232&rft.pages=213-232&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-024-11254-5&rft_dat=%3Cproquest_cross%3E3072276314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072276314&rft_id=info:pmid/&rfr_iscdi=true |