A positional-aware attention PCa detection network on multi-parametric MRI
Prostate cancer (PCa) is the most prevalent cancer among the males. PCa detection based on multi-parametric magnetic resonance imaging (mpMRI) can provide precise target points for puncture robots to enhance the accuracy of biopsy procedures. Deep learning (DL) methods have been shown to have better...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2024, Vol.18 (Suppl 1), p.677-684 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | Suppl 1 |
container_start_page | 677 |
container_title | Signal, image and video processing |
container_volume | 18 |
creator | Ren, Weiming Chen, Yongyi Zhang, Dan |
description | Prostate cancer (PCa) is the most prevalent cancer among the males. PCa detection based on multi-parametric magnetic resonance imaging (mpMRI) can provide precise target points for puncture robots to enhance the accuracy of biopsy procedures. Deep learning (DL) methods have been shown to have better performance than traditional methods on mpMRI-based PCa detection. However, most of the existing DL methods rely on the accurate segmentation of prostate regions, and the calibration of true labels requires time-consuming manual segmentation steps. Meanwhile, the interference of redundant information makes the DL model performance improvement limited. For these reasons, a novel positional-aware attention PCa detection network (PAPDN) is proposed. PAPDN can focus on the position features of PCa lesions and the correlation of mpMRI on channels. It can suppress the interference of redundant information generated by similar structures during PCa detection. The performance of PAPDN is evaluated with the prostate mpMRI dataset collected by Radboud University Medical Center (Radboudumc) in the Netherlands. The results show that PAPDN outperforms other similar algorithms on several rating metrics. |
doi_str_mv | 10.1007/s11760-024-03183-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072276295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072276295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e28e7ceb05f8fa1c993999126f3f311b95d6d7046ab29ce11c4c232c0bbeb8ea3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKsB19HcZJrHshQflYoiug6Z9I5MbWfGJKX4740d0Z13cx-cc7h8hJwDuwTG1FUEUJJRxkvKBGhByyMyAi0FBQVw_DszcUomMa5ZLsGVlnpE7mdF38UmNV3rNtTtXcDCpYTt96V4mrtihQn9YWsx7bvwXuRxu9ukhvYuuC2m0Pji4XlxRk5qt4k4-elj8npz_TK_o8vH28V8tqSeK5Yoco3KY8Wmta4deGOEMQa4rEUtACozXcmVYqV0FTceAXzpueCeVRVWGp0Yk4shtw_dxw5jsutuF_L70QqmOFeSm2lW8UHlQxdjwNr2odm68GmB2W9sdsBmMzZ7wGbLbBKDKWZx-4bhL_of1xf4gG-a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072276295</pqid></control><display><type>article</type><title>A positional-aware attention PCa detection network on multi-parametric MRI</title><source>Springer Nature - Complete Springer Journals</source><creator>Ren, Weiming ; Chen, Yongyi ; Zhang, Dan</creator><creatorcontrib>Ren, Weiming ; Chen, Yongyi ; Zhang, Dan</creatorcontrib><description>Prostate cancer (PCa) is the most prevalent cancer among the males. PCa detection based on multi-parametric magnetic resonance imaging (mpMRI) can provide precise target points for puncture robots to enhance the accuracy of biopsy procedures. Deep learning (DL) methods have been shown to have better performance than traditional methods on mpMRI-based PCa detection. However, most of the existing DL methods rely on the accurate segmentation of prostate regions, and the calibration of true labels requires time-consuming manual segmentation steps. Meanwhile, the interference of redundant information makes the DL model performance improvement limited. For these reasons, a novel positional-aware attention PCa detection network (PAPDN) is proposed. PAPDN can focus on the position features of PCa lesions and the correlation of mpMRI on channels. It can suppress the interference of redundant information generated by similar structures during PCa detection. The performance of PAPDN is evaluated with the prostate mpMRI dataset collected by Radboud University Medical Center (Radboudumc) in the Netherlands. The results show that PAPDN outperforms other similar algorithms on several rating metrics.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-024-03183-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Attention ; Computer Imaging ; Computer Science ; Health care facilities ; Image Processing and Computer Vision ; Interference ; Magnetic resonance imaging ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Performance evaluation ; Prostate ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2024, Vol.18 (Suppl 1), p.677-684</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e28e7ceb05f8fa1c993999126f3f311b95d6d7046ab29ce11c4c232c0bbeb8ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-024-03183-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-024-03183-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ren, Weiming</creatorcontrib><creatorcontrib>Chen, Yongyi</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><title>A positional-aware attention PCa detection network on multi-parametric MRI</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Prostate cancer (PCa) is the most prevalent cancer among the males. PCa detection based on multi-parametric magnetic resonance imaging (mpMRI) can provide precise target points for puncture robots to enhance the accuracy of biopsy procedures. Deep learning (DL) methods have been shown to have better performance than traditional methods on mpMRI-based PCa detection. However, most of the existing DL methods rely on the accurate segmentation of prostate regions, and the calibration of true labels requires time-consuming manual segmentation steps. Meanwhile, the interference of redundant information makes the DL model performance improvement limited. For these reasons, a novel positional-aware attention PCa detection network (PAPDN) is proposed. PAPDN can focus on the position features of PCa lesions and the correlation of mpMRI on channels. It can suppress the interference of redundant information generated by similar structures during PCa detection. The performance of PAPDN is evaluated with the prostate mpMRI dataset collected by Radboud University Medical Center (Radboudumc) in the Netherlands. The results show that PAPDN outperforms other similar algorithms on several rating metrics.</description><subject>Algorithms</subject><subject>Attention</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Health care facilities</subject><subject>Image Processing and Computer Vision</subject><subject>Interference</subject><subject>Magnetic resonance imaging</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Performance evaluation</subject><subject>Prostate</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKsB19HcZJrHshQflYoiug6Z9I5MbWfGJKX4740d0Z13cx-cc7h8hJwDuwTG1FUEUJJRxkvKBGhByyMyAi0FBQVw_DszcUomMa5ZLsGVlnpE7mdF38UmNV3rNtTtXcDCpYTt96V4mrtihQn9YWsx7bvwXuRxu9ukhvYuuC2m0Pji4XlxRk5qt4k4-elj8npz_TK_o8vH28V8tqSeK5Yoco3KY8Wmta4deGOEMQa4rEUtACozXcmVYqV0FTceAXzpueCeVRVWGp0Yk4shtw_dxw5jsutuF_L70QqmOFeSm2lW8UHlQxdjwNr2odm68GmB2W9sdsBmMzZ7wGbLbBKDKWZx-4bhL_of1xf4gG-a</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ren, Weiming</creator><creator>Chen, Yongyi</creator><creator>Zhang, Dan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>A positional-aware attention PCa detection network on multi-parametric MRI</title><author>Ren, Weiming ; Chen, Yongyi ; Zhang, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e28e7ceb05f8fa1c993999126f3f311b95d6d7046ab29ce11c4c232c0bbeb8ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Attention</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Health care facilities</topic><topic>Image Processing and Computer Vision</topic><topic>Interference</topic><topic>Magnetic resonance imaging</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Performance evaluation</topic><topic>Prostate</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Weiming</creatorcontrib><creatorcontrib>Chen, Yongyi</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Weiming</au><au>Chen, Yongyi</au><au>Zhang, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A positional-aware attention PCa detection network on multi-parametric MRI</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024</date><risdate>2024</risdate><volume>18</volume><issue>Suppl 1</issue><spage>677</spage><epage>684</epage><pages>677-684</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Prostate cancer (PCa) is the most prevalent cancer among the males. PCa detection based on multi-parametric magnetic resonance imaging (mpMRI) can provide precise target points for puncture robots to enhance the accuracy of biopsy procedures. Deep learning (DL) methods have been shown to have better performance than traditional methods on mpMRI-based PCa detection. However, most of the existing DL methods rely on the accurate segmentation of prostate regions, and the calibration of true labels requires time-consuming manual segmentation steps. Meanwhile, the interference of redundant information makes the DL model performance improvement limited. For these reasons, a novel positional-aware attention PCa detection network (PAPDN) is proposed. PAPDN can focus on the position features of PCa lesions and the correlation of mpMRI on channels. It can suppress the interference of redundant information generated by similar structures during PCa detection. The performance of PAPDN is evaluated with the prostate mpMRI dataset collected by Radboud University Medical Center (Radboudumc) in the Netherlands. The results show that PAPDN outperforms other similar algorithms on several rating metrics.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-024-03183-4</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2024, Vol.18 (Suppl 1), p.677-684 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_3072276295 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Attention Computer Imaging Computer Science Health care facilities Image Processing and Computer Vision Interference Magnetic resonance imaging Multimedia Information Systems Original Paper Pattern Recognition and Graphics Performance evaluation Prostate Signal,Image and Speech Processing Vision |
title | A positional-aware attention PCa detection network on multi-parametric MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20positional-aware%20attention%20PCa%20detection%20network%20on%20multi-parametric%20MRI&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Ren,%20Weiming&rft.date=2024&rft.volume=18&rft.issue=Suppl%201&rft.spage=677&rft.epage=684&rft.pages=677-684&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-024-03183-4&rft_dat=%3Cproquest_cross%3E3072276295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072276295&rft_id=info:pmid/&rfr_iscdi=true |