A positional-aware attention PCa detection network on multi-parametric MRI

Prostate cancer (PCa) is the most prevalent cancer among the males. PCa detection based on multi-parametric magnetic resonance imaging (mpMRI) can provide precise target points for puncture robots to enhance the accuracy of biopsy procedures. Deep learning (DL) methods have been shown to have better...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2024, Vol.18 (Suppl 1), p.677-684
Hauptverfasser: Ren, Weiming, Chen, Yongyi, Zhang, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue Suppl 1
container_start_page 677
container_title Signal, image and video processing
container_volume 18
creator Ren, Weiming
Chen, Yongyi
Zhang, Dan
description Prostate cancer (PCa) is the most prevalent cancer among the males. PCa detection based on multi-parametric magnetic resonance imaging (mpMRI) can provide precise target points for puncture robots to enhance the accuracy of biopsy procedures. Deep learning (DL) methods have been shown to have better performance than traditional methods on mpMRI-based PCa detection. However, most of the existing DL methods rely on the accurate segmentation of prostate regions, and the calibration of true labels requires time-consuming manual segmentation steps. Meanwhile, the interference of redundant information makes the DL model performance improvement limited. For these reasons, a novel positional-aware attention PCa detection network (PAPDN) is proposed. PAPDN can focus on the position features of PCa lesions and the correlation of mpMRI on channels. It can suppress the interference of redundant information generated by similar structures during PCa detection. The performance of PAPDN is evaluated with the prostate mpMRI dataset collected by Radboud University Medical Center (Radboudumc) in the Netherlands. The results show that PAPDN outperforms other similar algorithms on several rating metrics.
doi_str_mv 10.1007/s11760-024-03183-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072276295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072276295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e28e7ceb05f8fa1c993999126f3f311b95d6d7046ab29ce11c4c232c0bbeb8ea3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKsB19HcZJrHshQflYoiug6Z9I5MbWfGJKX4740d0Z13cx-cc7h8hJwDuwTG1FUEUJJRxkvKBGhByyMyAi0FBQVw_DszcUomMa5ZLsGVlnpE7mdF38UmNV3rNtTtXcDCpYTt96V4mrtihQn9YWsx7bvwXuRxu9ukhvYuuC2m0Pji4XlxRk5qt4k4-elj8npz_TK_o8vH28V8tqSeK5Yoco3KY8Wmta4deGOEMQa4rEUtACozXcmVYqV0FTceAXzpueCeVRVWGp0Yk4shtw_dxw5jsutuF_L70QqmOFeSm2lW8UHlQxdjwNr2odm68GmB2W9sdsBmMzZ7wGbLbBKDKWZx-4bhL_of1xf4gG-a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072276295</pqid></control><display><type>article</type><title>A positional-aware attention PCa detection network on multi-parametric MRI</title><source>Springer Nature - Complete Springer Journals</source><creator>Ren, Weiming ; Chen, Yongyi ; Zhang, Dan</creator><creatorcontrib>Ren, Weiming ; Chen, Yongyi ; Zhang, Dan</creatorcontrib><description>Prostate cancer (PCa) is the most prevalent cancer among the males. PCa detection based on multi-parametric magnetic resonance imaging (mpMRI) can provide precise target points for puncture robots to enhance the accuracy of biopsy procedures. Deep learning (DL) methods have been shown to have better performance than traditional methods on mpMRI-based PCa detection. However, most of the existing DL methods rely on the accurate segmentation of prostate regions, and the calibration of true labels requires time-consuming manual segmentation steps. Meanwhile, the interference of redundant information makes the DL model performance improvement limited. For these reasons, a novel positional-aware attention PCa detection network (PAPDN) is proposed. PAPDN can focus on the position features of PCa lesions and the correlation of mpMRI on channels. It can suppress the interference of redundant information generated by similar structures during PCa detection. The performance of PAPDN is evaluated with the prostate mpMRI dataset collected by Radboud University Medical Center (Radboudumc) in the Netherlands. The results show that PAPDN outperforms other similar algorithms on several rating metrics.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-024-03183-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Attention ; Computer Imaging ; Computer Science ; Health care facilities ; Image Processing and Computer Vision ; Interference ; Magnetic resonance imaging ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Performance evaluation ; Prostate ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2024, Vol.18 (Suppl 1), p.677-684</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e28e7ceb05f8fa1c993999126f3f311b95d6d7046ab29ce11c4c232c0bbeb8ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-024-03183-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-024-03183-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ren, Weiming</creatorcontrib><creatorcontrib>Chen, Yongyi</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><title>A positional-aware attention PCa detection network on multi-parametric MRI</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Prostate cancer (PCa) is the most prevalent cancer among the males. PCa detection based on multi-parametric magnetic resonance imaging (mpMRI) can provide precise target points for puncture robots to enhance the accuracy of biopsy procedures. Deep learning (DL) methods have been shown to have better performance than traditional methods on mpMRI-based PCa detection. However, most of the existing DL methods rely on the accurate segmentation of prostate regions, and the calibration of true labels requires time-consuming manual segmentation steps. Meanwhile, the interference of redundant information makes the DL model performance improvement limited. For these reasons, a novel positional-aware attention PCa detection network (PAPDN) is proposed. PAPDN can focus on the position features of PCa lesions and the correlation of mpMRI on channels. It can suppress the interference of redundant information generated by similar structures during PCa detection. The performance of PAPDN is evaluated with the prostate mpMRI dataset collected by Radboud University Medical Center (Radboudumc) in the Netherlands. The results show that PAPDN outperforms other similar algorithms on several rating metrics.</description><subject>Algorithms</subject><subject>Attention</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Health care facilities</subject><subject>Image Processing and Computer Vision</subject><subject>Interference</subject><subject>Magnetic resonance imaging</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Performance evaluation</subject><subject>Prostate</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKsB19HcZJrHshQflYoiug6Z9I5MbWfGJKX4740d0Z13cx-cc7h8hJwDuwTG1FUEUJJRxkvKBGhByyMyAi0FBQVw_DszcUomMa5ZLsGVlnpE7mdF38UmNV3rNtTtXcDCpYTt96V4mrtihQn9YWsx7bvwXuRxu9ukhvYuuC2m0Pji4XlxRk5qt4k4-elj8npz_TK_o8vH28V8tqSeK5Yoco3KY8Wmta4deGOEMQa4rEUtACozXcmVYqV0FTceAXzpueCeVRVWGp0Yk4shtw_dxw5jsutuF_L70QqmOFeSm2lW8UHlQxdjwNr2odm68GmB2W9sdsBmMzZ7wGbLbBKDKWZx-4bhL_of1xf4gG-a</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ren, Weiming</creator><creator>Chen, Yongyi</creator><creator>Zhang, Dan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>A positional-aware attention PCa detection network on multi-parametric MRI</title><author>Ren, Weiming ; Chen, Yongyi ; Zhang, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e28e7ceb05f8fa1c993999126f3f311b95d6d7046ab29ce11c4c232c0bbeb8ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Attention</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Health care facilities</topic><topic>Image Processing and Computer Vision</topic><topic>Interference</topic><topic>Magnetic resonance imaging</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Performance evaluation</topic><topic>Prostate</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Weiming</creatorcontrib><creatorcontrib>Chen, Yongyi</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Weiming</au><au>Chen, Yongyi</au><au>Zhang, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A positional-aware attention PCa detection network on multi-parametric MRI</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024</date><risdate>2024</risdate><volume>18</volume><issue>Suppl 1</issue><spage>677</spage><epage>684</epage><pages>677-684</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Prostate cancer (PCa) is the most prevalent cancer among the males. PCa detection based on multi-parametric magnetic resonance imaging (mpMRI) can provide precise target points for puncture robots to enhance the accuracy of biopsy procedures. Deep learning (DL) methods have been shown to have better performance than traditional methods on mpMRI-based PCa detection. However, most of the existing DL methods rely on the accurate segmentation of prostate regions, and the calibration of true labels requires time-consuming manual segmentation steps. Meanwhile, the interference of redundant information makes the DL model performance improvement limited. For these reasons, a novel positional-aware attention PCa detection network (PAPDN) is proposed. PAPDN can focus on the position features of PCa lesions and the correlation of mpMRI on channels. It can suppress the interference of redundant information generated by similar structures during PCa detection. The performance of PAPDN is evaluated with the prostate mpMRI dataset collected by Radboud University Medical Center (Radboudumc) in the Netherlands. The results show that PAPDN outperforms other similar algorithms on several rating metrics.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-024-03183-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2024, Vol.18 (Suppl 1), p.677-684
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_3072276295
source Springer Nature - Complete Springer Journals
subjects Algorithms
Attention
Computer Imaging
Computer Science
Health care facilities
Image Processing and Computer Vision
Interference
Magnetic resonance imaging
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Performance evaluation
Prostate
Signal,Image and Speech Processing
Vision
title A positional-aware attention PCa detection network on multi-parametric MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20positional-aware%20attention%20PCa%20detection%20network%20on%20multi-parametric%20MRI&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Ren,%20Weiming&rft.date=2024&rft.volume=18&rft.issue=Suppl%201&rft.spage=677&rft.epage=684&rft.pages=677-684&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-024-03183-4&rft_dat=%3Cproquest_cross%3E3072276295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072276295&rft_id=info:pmid/&rfr_iscdi=true