Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix
Non-line-of-sight (NLOS) imaging aims to reconstruct objects obscured by direct line of sight. Traditional Single-pixel Imaging (SPI) performs correlation operations on signals through the illumination pattern and intensity of a single-pixel detector. However, the reconstructed result mainly provide...
Gespeichert in:
Veröffentlicht in: | Applied physics. B, Lasers and optics Lasers and optics, 2024-07, Vol.130 (7), Article 127 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Applied physics. B, Lasers and optics |
container_volume | 130 |
creator | Li, Mengdi Guo, ·Zhixing Zhang, ·Chao Jiang, ·Xuexing Tai, ·Yonghang |
description | Non-line-of-sight (NLOS) imaging aims to reconstruct objects obscured by direct line of sight. Traditional Single-pixel Imaging (SPI) performs correlation operations on signals through the illumination pattern and intensity of a single-pixel detector. However, the reconstructed result mainly provides spatial information of objects, which limits its practical applications, including autonomous driving and smart cities for defense. In this work, leveraging active correlations-based imaging techniques, a multi-wavelength single-pixel non-line-of-sight (NLOS) reconstruction framework is proposed. By introducing compressive sensing, a Total Variation minimization (TV) RGB color space algorithm is designed for more object information reconstructions via under-sampling. The proposed approach is capable of reconstructing both the space and color information of hidden objects with fine detail under the intermediate reflector and filter settings. The experimental results demonstrate that the proposed scheme achieves a compression rate of 29% and outperforms conventional single-pixel imaging in terms of object information at low sampling rates, having potential practical applications. |
doi_str_mv | 10.1007/s00340-024-08265-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072276160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072276160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-3c14bc67b2e981feaa1e1a2e1375886ce45a43f105e39729f2411a0948c658453</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH3GSJap4SUVsYG250SR1lTjFTtry97gEiR2zmc05dzSXkGsOtxwgv4sAUgEDoRgUQmdMnJAZV1Iw0Ko8JTMolWaC5_ycXMS4gTS6KGYEX8d2cGxvd9iib4Y1jc43LbKtO2BLfe9Z6zyyvmbRNeuBus42iaB7l1hLq77bBozR7ZBG9EeZdmjjGLBDP9DODsEdLslZbduIV797Tj4eH94Xz2z59vSyuF-ySgAMTFZcrSqdrwSWBa_RWo7cCuQyz4pCV6gyq2TNIUNZ5qKsheLcpteKSmeFyuSc3Ey529B_jhgHs-nH4NNJIyEXItdcQ6LERFWhjzFgbbYhvRW-DAdzrNNMdZpUp_mp04gkyUmKCfYNhr_of6xv9rV4vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072276160</pqid></control><display><type>article</type><title>Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix</title><source>SpringerNature Journals</source><creator>Li, Mengdi ; Guo, ·Zhixing ; Zhang, ·Chao ; Jiang, ·Xuexing ; Tai, ·Yonghang</creator><creatorcontrib>Li, Mengdi ; Guo, ·Zhixing ; Zhang, ·Chao ; Jiang, ·Xuexing ; Tai, ·Yonghang</creatorcontrib><description>Non-line-of-sight (NLOS) imaging aims to reconstruct objects obscured by direct line of sight. Traditional Single-pixel Imaging (SPI) performs correlation operations on signals through the illumination pattern and intensity of a single-pixel detector. However, the reconstructed result mainly provides spatial information of objects, which limits its practical applications, including autonomous driving and smart cities for defense. In this work, leveraging active correlations-based imaging techniques, a multi-wavelength single-pixel non-line-of-sight (NLOS) reconstruction framework is proposed. By introducing compressive sensing, a Total Variation minimization (TV) RGB color space algorithm is designed for more object information reconstructions via under-sampling. The proposed approach is capable of reconstructing both the space and color information of hidden objects with fine detail under the intermediate reflector and filter settings. The experimental results demonstrate that the proposed scheme achieves a compression rate of 29% and outperforms conventional single-pixel imaging in terms of object information at low sampling rates, having potential practical applications.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-024-08265-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Color ; Engineering ; Image reconstruction ; Imaging techniques ; Lasers ; Line of sight ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Pixels ; Quantum Optics ; Sampling ; Spatial data</subject><ispartof>Applied physics. B, Lasers and optics, 2024-07, Vol.130 (7), Article 127</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-3c14bc67b2e981feaa1e1a2e1375886ce45a43f105e39729f2411a0948c658453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00340-024-08265-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00340-024-08265-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Li, Mengdi</creatorcontrib><creatorcontrib>Guo, ·Zhixing</creatorcontrib><creatorcontrib>Zhang, ·Chao</creatorcontrib><creatorcontrib>Jiang, ·Xuexing</creatorcontrib><creatorcontrib>Tai, ·Yonghang</creatorcontrib><title>Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>Non-line-of-sight (NLOS) imaging aims to reconstruct objects obscured by direct line of sight. Traditional Single-pixel Imaging (SPI) performs correlation operations on signals through the illumination pattern and intensity of a single-pixel detector. However, the reconstructed result mainly provides spatial information of objects, which limits its practical applications, including autonomous driving and smart cities for defense. In this work, leveraging active correlations-based imaging techniques, a multi-wavelength single-pixel non-line-of-sight (NLOS) reconstruction framework is proposed. By introducing compressive sensing, a Total Variation minimization (TV) RGB color space algorithm is designed for more object information reconstructions via under-sampling. The proposed approach is capable of reconstructing both the space and color information of hidden objects with fine detail under the intermediate reflector and filter settings. The experimental results demonstrate that the proposed scheme achieves a compression rate of 29% and outperforms conventional single-pixel imaging in terms of object information at low sampling rates, having potential practical applications.</description><subject>Algorithms</subject><subject>Color</subject><subject>Engineering</subject><subject>Image reconstruction</subject><subject>Imaging techniques</subject><subject>Lasers</subject><subject>Line of sight</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pixels</subject><subject>Quantum Optics</subject><subject>Sampling</subject><subject>Spatial data</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH3GSJap4SUVsYG250SR1lTjFTtry97gEiR2zmc05dzSXkGsOtxwgv4sAUgEDoRgUQmdMnJAZV1Iw0Ko8JTMolWaC5_ycXMS4gTS6KGYEX8d2cGxvd9iib4Y1jc43LbKtO2BLfe9Z6zyyvmbRNeuBus42iaB7l1hLq77bBozR7ZBG9EeZdmjjGLBDP9DODsEdLslZbduIV797Tj4eH94Xz2z59vSyuF-ySgAMTFZcrSqdrwSWBa_RWo7cCuQyz4pCV6gyq2TNIUNZ5qKsheLcpteKSmeFyuSc3Ey529B_jhgHs-nH4NNJIyEXItdcQ6LERFWhjzFgbbYhvRW-DAdzrNNMdZpUp_mp04gkyUmKCfYNhr_of6xv9rV4vA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Li, Mengdi</creator><creator>Guo, ·Zhixing</creator><creator>Zhang, ·Chao</creator><creator>Jiang, ·Xuexing</creator><creator>Tai, ·Yonghang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix</title><author>Li, Mengdi ; Guo, ·Zhixing ; Zhang, ·Chao ; Jiang, ·Xuexing ; Tai, ·Yonghang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-3c14bc67b2e981feaa1e1a2e1375886ce45a43f105e39729f2411a0948c658453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Engineering</topic><topic>Image reconstruction</topic><topic>Imaging techniques</topic><topic>Lasers</topic><topic>Line of sight</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pixels</topic><topic>Quantum Optics</topic><topic>Sampling</topic><topic>Spatial data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mengdi</creatorcontrib><creatorcontrib>Guo, ·Zhixing</creatorcontrib><creatorcontrib>Zhang, ·Chao</creatorcontrib><creatorcontrib>Jiang, ·Xuexing</creatorcontrib><creatorcontrib>Tai, ·Yonghang</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mengdi</au><au>Guo, ·Zhixing</au><au>Zhang, ·Chao</au><au>Jiang, ·Xuexing</au><au>Tai, ·Yonghang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>130</volume><issue>7</issue><artnum>127</artnum><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>Non-line-of-sight (NLOS) imaging aims to reconstruct objects obscured by direct line of sight. Traditional Single-pixel Imaging (SPI) performs correlation operations on signals through the illumination pattern and intensity of a single-pixel detector. However, the reconstructed result mainly provides spatial information of objects, which limits its practical applications, including autonomous driving and smart cities for defense. In this work, leveraging active correlations-based imaging techniques, a multi-wavelength single-pixel non-line-of-sight (NLOS) reconstruction framework is proposed. By introducing compressive sensing, a Total Variation minimization (TV) RGB color space algorithm is designed for more object information reconstructions via under-sampling. The proposed approach is capable of reconstructing both the space and color information of hidden objects with fine detail under the intermediate reflector and filter settings. The experimental results demonstrate that the proposed scheme achieves a compression rate of 29% and outperforms conventional single-pixel imaging in terms of object information at low sampling rates, having potential practical applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00340-024-08265-2</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-2171 |
ispartof | Applied physics. B, Lasers and optics, 2024-07, Vol.130 (7), Article 127 |
issn | 0946-2171 1432-0649 |
language | eng |
recordid | cdi_proquest_journals_3072276160 |
source | SpringerNature Journals |
subjects | Algorithms Color Engineering Image reconstruction Imaging techniques Lasers Line of sight Optical Devices Optics Photonics Physical Chemistry Physics Physics and Astronomy Pixels Quantum Optics Sampling Spatial data |
title | Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-wavelength%20single-pixel%20non-line-of-sight%20imaging%20with%20a%20compressive%20sensing%20measurement%20matrix&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Li,%20Mengdi&rft.date=2024-07-01&rft.volume=130&rft.issue=7&rft.artnum=127&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-024-08265-2&rft_dat=%3Cproquest_cross%3E3072276160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072276160&rft_id=info:pmid/&rfr_iscdi=true |