Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix

Non-line-of-sight (NLOS) imaging aims to reconstruct objects obscured by direct line of sight. Traditional Single-pixel Imaging (SPI) performs correlation operations on signals through the illumination pattern and intensity of a single-pixel detector. However, the reconstructed result mainly provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 2024-07, Vol.130 (7), Article 127
Hauptverfasser: Li, Mengdi, Guo, ·Zhixing, Zhang, ·Chao, Jiang, ·Xuexing, Tai, ·Yonghang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Applied physics. B, Lasers and optics
container_volume 130
creator Li, Mengdi
Guo, ·Zhixing
Zhang, ·Chao
Jiang, ·Xuexing
Tai, ·Yonghang
description Non-line-of-sight (NLOS) imaging aims to reconstruct objects obscured by direct line of sight. Traditional Single-pixel Imaging (SPI) performs correlation operations on signals through the illumination pattern and intensity of a single-pixel detector. However, the reconstructed result mainly provides spatial information of objects, which limits its practical applications, including autonomous driving and smart cities for defense. In this work, leveraging active correlations-based imaging techniques, a multi-wavelength single-pixel non-line-of-sight (NLOS) reconstruction framework is proposed. By introducing compressive sensing, a Total Variation minimization (TV) RGB color space algorithm is designed for more object information reconstructions via under-sampling. The proposed approach is capable of reconstructing both the space and color information of hidden objects with fine detail under the intermediate reflector and filter settings. The experimental results demonstrate that the proposed scheme achieves a compression rate of 29% and outperforms conventional single-pixel imaging in terms of object information at low sampling rates, having potential practical applications.
doi_str_mv 10.1007/s00340-024-08265-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072276160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072276160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-3c14bc67b2e981feaa1e1a2e1375886ce45a43f105e39729f2411a0948c658453</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH3GSJap4SUVsYG250SR1lTjFTtry97gEiR2zmc05dzSXkGsOtxwgv4sAUgEDoRgUQmdMnJAZV1Iw0Ko8JTMolWaC5_ycXMS4gTS6KGYEX8d2cGxvd9iib4Y1jc43LbKtO2BLfe9Z6zyyvmbRNeuBus42iaB7l1hLq77bBozR7ZBG9EeZdmjjGLBDP9DODsEdLslZbduIV797Tj4eH94Xz2z59vSyuF-ySgAMTFZcrSqdrwSWBa_RWo7cCuQyz4pCV6gyq2TNIUNZ5qKsheLcpteKSmeFyuSc3Ey529B_jhgHs-nH4NNJIyEXItdcQ6LERFWhjzFgbbYhvRW-DAdzrNNMdZpUp_mp04gkyUmKCfYNhr_of6xv9rV4vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072276160</pqid></control><display><type>article</type><title>Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix</title><source>SpringerNature Journals</source><creator>Li, Mengdi ; Guo, ·Zhixing ; Zhang, ·Chao ; Jiang, ·Xuexing ; Tai, ·Yonghang</creator><creatorcontrib>Li, Mengdi ; Guo, ·Zhixing ; Zhang, ·Chao ; Jiang, ·Xuexing ; Tai, ·Yonghang</creatorcontrib><description>Non-line-of-sight (NLOS) imaging aims to reconstruct objects obscured by direct line of sight. Traditional Single-pixel Imaging (SPI) performs correlation operations on signals through the illumination pattern and intensity of a single-pixel detector. However, the reconstructed result mainly provides spatial information of objects, which limits its practical applications, including autonomous driving and smart cities for defense. In this work, leveraging active correlations-based imaging techniques, a multi-wavelength single-pixel non-line-of-sight (NLOS) reconstruction framework is proposed. By introducing compressive sensing, a Total Variation minimization (TV) RGB color space algorithm is designed for more object information reconstructions via under-sampling. The proposed approach is capable of reconstructing both the space and color information of hidden objects with fine detail under the intermediate reflector and filter settings. The experimental results demonstrate that the proposed scheme achieves a compression rate of 29% and outperforms conventional single-pixel imaging in terms of object information at low sampling rates, having potential practical applications.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-024-08265-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Color ; Engineering ; Image reconstruction ; Imaging techniques ; Lasers ; Line of sight ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Pixels ; Quantum Optics ; Sampling ; Spatial data</subject><ispartof>Applied physics. B, Lasers and optics, 2024-07, Vol.130 (7), Article 127</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-3c14bc67b2e981feaa1e1a2e1375886ce45a43f105e39729f2411a0948c658453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00340-024-08265-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00340-024-08265-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Li, Mengdi</creatorcontrib><creatorcontrib>Guo, ·Zhixing</creatorcontrib><creatorcontrib>Zhang, ·Chao</creatorcontrib><creatorcontrib>Jiang, ·Xuexing</creatorcontrib><creatorcontrib>Tai, ·Yonghang</creatorcontrib><title>Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>Non-line-of-sight (NLOS) imaging aims to reconstruct objects obscured by direct line of sight. Traditional Single-pixel Imaging (SPI) performs correlation operations on signals through the illumination pattern and intensity of a single-pixel detector. However, the reconstructed result mainly provides spatial information of objects, which limits its practical applications, including autonomous driving and smart cities for defense. In this work, leveraging active correlations-based imaging techniques, a multi-wavelength single-pixel non-line-of-sight (NLOS) reconstruction framework is proposed. By introducing compressive sensing, a Total Variation minimization (TV) RGB color space algorithm is designed for more object information reconstructions via under-sampling. The proposed approach is capable of reconstructing both the space and color information of hidden objects with fine detail under the intermediate reflector and filter settings. The experimental results demonstrate that the proposed scheme achieves a compression rate of 29% and outperforms conventional single-pixel imaging in terms of object information at low sampling rates, having potential practical applications.</description><subject>Algorithms</subject><subject>Color</subject><subject>Engineering</subject><subject>Image reconstruction</subject><subject>Imaging techniques</subject><subject>Lasers</subject><subject>Line of sight</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pixels</subject><subject>Quantum Optics</subject><subject>Sampling</subject><subject>Spatial data</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH3GSJap4SUVsYG250SR1lTjFTtry97gEiR2zmc05dzSXkGsOtxwgv4sAUgEDoRgUQmdMnJAZV1Iw0Ko8JTMolWaC5_ycXMS4gTS6KGYEX8d2cGxvd9iib4Y1jc43LbKtO2BLfe9Z6zyyvmbRNeuBus42iaB7l1hLq77bBozR7ZBG9EeZdmjjGLBDP9DODsEdLslZbduIV797Tj4eH94Xz2z59vSyuF-ySgAMTFZcrSqdrwSWBa_RWo7cCuQyz4pCV6gyq2TNIUNZ5qKsheLcpteKSmeFyuSc3Ey529B_jhgHs-nH4NNJIyEXItdcQ6LERFWhjzFgbbYhvRW-DAdzrNNMdZpUp_mp04gkyUmKCfYNhr_of6xv9rV4vA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Li, Mengdi</creator><creator>Guo, ·Zhixing</creator><creator>Zhang, ·Chao</creator><creator>Jiang, ·Xuexing</creator><creator>Tai, ·Yonghang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix</title><author>Li, Mengdi ; Guo, ·Zhixing ; Zhang, ·Chao ; Jiang, ·Xuexing ; Tai, ·Yonghang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-3c14bc67b2e981feaa1e1a2e1375886ce45a43f105e39729f2411a0948c658453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Engineering</topic><topic>Image reconstruction</topic><topic>Imaging techniques</topic><topic>Lasers</topic><topic>Line of sight</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pixels</topic><topic>Quantum Optics</topic><topic>Sampling</topic><topic>Spatial data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mengdi</creatorcontrib><creatorcontrib>Guo, ·Zhixing</creatorcontrib><creatorcontrib>Zhang, ·Chao</creatorcontrib><creatorcontrib>Jiang, ·Xuexing</creatorcontrib><creatorcontrib>Tai, ·Yonghang</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mengdi</au><au>Guo, ·Zhixing</au><au>Zhang, ·Chao</au><au>Jiang, ·Xuexing</au><au>Tai, ·Yonghang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>130</volume><issue>7</issue><artnum>127</artnum><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>Non-line-of-sight (NLOS) imaging aims to reconstruct objects obscured by direct line of sight. Traditional Single-pixel Imaging (SPI) performs correlation operations on signals through the illumination pattern and intensity of a single-pixel detector. However, the reconstructed result mainly provides spatial information of objects, which limits its practical applications, including autonomous driving and smart cities for defense. In this work, leveraging active correlations-based imaging techniques, a multi-wavelength single-pixel non-line-of-sight (NLOS) reconstruction framework is proposed. By introducing compressive sensing, a Total Variation minimization (TV) RGB color space algorithm is designed for more object information reconstructions via under-sampling. The proposed approach is capable of reconstructing both the space and color information of hidden objects with fine detail under the intermediate reflector and filter settings. The experimental results demonstrate that the proposed scheme achieves a compression rate of 29% and outperforms conventional single-pixel imaging in terms of object information at low sampling rates, having potential practical applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00340-024-08265-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 0946-2171
ispartof Applied physics. B, Lasers and optics, 2024-07, Vol.130 (7), Article 127
issn 0946-2171
1432-0649
language eng
recordid cdi_proquest_journals_3072276160
source SpringerNature Journals
subjects Algorithms
Color
Engineering
Image reconstruction
Imaging techniques
Lasers
Line of sight
Optical Devices
Optics
Photonics
Physical Chemistry
Physics
Physics and Astronomy
Pixels
Quantum Optics
Sampling
Spatial data
title Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-wavelength%20single-pixel%20non-line-of-sight%20imaging%20with%20a%20compressive%20sensing%20measurement%20matrix&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Li,%20Mengdi&rft.date=2024-07-01&rft.volume=130&rft.issue=7&rft.artnum=127&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-024-08265-2&rft_dat=%3Cproquest_cross%3E3072276160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072276160&rft_id=info:pmid/&rfr_iscdi=true