From Disorder to Order: Inheritance of Magnetic Remanence in Tetrataenite‐Bearing Meteorites From Multi‐Phase Micromagnetic Modeling

An increasing amount of evidence suggests that the tetrataenite‐bearing cloudy zones (CZ) in iron and stony‐iron meteorites can preserve magnetic records of ancient magnetic activity of their parent bodies over solar system timescales. Tetrataenite islands in the CZ are nanometer‐sized (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Planets 2024-06, Vol.129 (6), p.n/a
Hauptverfasser: Devienne, José A. P. M., Berndt, Thomas A., Williams, Wyn, Chen, Shichu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Journal of geophysical research. Planets
container_volume 129
creator Devienne, José A. P. M.
Berndt, Thomas A.
Williams, Wyn
Chen, Shichu
description An increasing amount of evidence suggests that the tetrataenite‐bearing cloudy zones (CZ) in iron and stony‐iron meteorites can preserve magnetic records of ancient magnetic activity of their parent bodies over solar system timescales. Tetrataenite islands in the CZ are nanometer‐sized (
doi_str_mv 10.1029/2023JE008268
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072233770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072233770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1941-25f7d1c062535a44a297451f58e8cdb02ce05b7ac8ead343ad3995362dfa27373</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhSdGEwmy8wGauHW0PzPTqTtFQAgTDMH1pMzcgZKhg22JYefSpc_ok1hEEld20d6cfufcmxsElwTfEEzFLcWUjXoYpzRJT4IWJYkIBcH49Fhjwc-DjrUr7E_qJcJawUffNGv0qGxjSjDINWiyL-7QUC_BKCd1AaipUCYXGpwq0BTWUsNeVRrNwBnpJGjl4Ov98wGkUXqBMnDQeDNY9BOfbWun_P_zUlpAmSq8eMzLmhJqb7oIzipZW-j8vu3gpd-bdZ_C8WQw7N6Pw4KIiIQ0rnhJCpzQmMUyiiQVPIpJFaeQFuUc0wJwPOeySEGWLGL-EiJmCS0rSTnjrB1cHXI3pnndgnX5qtka7VvmDHNKGeMce-r6QPlRrTVQ5Ruj1tLscoLz_brzv-v2ODvgb6qG3b9sPhpMe5TGlLBvwkSDaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072233770</pqid></control><display><type>article</type><title>From Disorder to Order: Inheritance of Magnetic Remanence in Tetrataenite‐Bearing Meteorites From Multi‐Phase Micromagnetic Modeling</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Devienne, José A. P. M. ; Berndt, Thomas A. ; Williams, Wyn ; Chen, Shichu</creator><creatorcontrib>Devienne, José A. P. M. ; Berndt, Thomas A. ; Williams, Wyn ; Chen, Shichu</creatorcontrib><description>An increasing amount of evidence suggests that the tetrataenite‐bearing cloudy zones (CZ) in iron and stony‐iron meteorites can preserve magnetic records of ancient magnetic activity of their parent bodies over solar system timescales. Tetrataenite islands in the CZ are nanometer‐sized (&lt;200 nm) crystals that usually form through ordering from precursor taenite islands upon extremely slow cooling through 320°C. Recent micromagnetic models have shown that such precursor taenite islands form highly thermally stable single‐domain (SD) or single‐vortex states (SV). In this work we employ a 3D finite element multi‐phase micromagnetic modeling to show that tetrataenite inherits the magnetic remanence of taenite precursor when it forms over underlying SD states. When taenite forms SV states, however, tetrataenite resets the precursor magnetization and records a new remanence through chemical ordering at 320°C. We further assess the thermal stability of tetrataenite islands. We show that in cases where tetrataenite inherits the domain states of its precursor taenite, the origin of the remanence can be up to ∼105 years older than previously thought in fast‐cooled meteorites, and ∼1–≳6 Myr in slowly cooled meteorites. It indicates, therefore, that different regions across slowly cooled CZ record distinct stages of planetary formation. Plain Language Summary Meteorites are fragments of other planetary bodies. They can give us unique insights about how extraterrestrial bodies formed and evolved, and if these bodies have once had a liquid core capable of generating magnetic fields. Nanometer‐sized FeNi particles formed within meteorite metal can retain a magnetic memory of planetary fields. By assessing a meteorite's magnetic memory we can then understand the internal conditions prevailing within their parent bodies. In this work we use numerical models to show that meteorites can retain magnetic signals of different periods of their parent body's formation and evolution. Inspired by our findings, we also point toward potential pathways to optimize FeNi‐based nanoparticles for technological applications. Key Points Single‐domain states formed in taenite precursor are preserved through tetrataenite chemical ordering Inheritance of remanence in fast‐cooled Iron meteorites impacts both the timing and intensity of the recorded paleomagnetic field Time‐resolved records in slowly cooled Iron meteorites are possible through different recording mechanisms in different grain sizes</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1029/2023JE008268</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Crystals ; Evolution ; Iron meteorites ; Islands ; Magnetic fields ; Magnetic signals ; magnetic stability ; Mathematical models ; Meteorite parent bodies ; Meteorites ; Meteors &amp; meteorites ; micromagnetics ; Nanoparticles ; Numerical models ; Planet formation ; Precursors ; Remanence ; Solar system ; taenite ; tetrataenite ; Thermal stability</subject><ispartof>Journal of geophysical research. Planets, 2024-06, Vol.129 (6), p.n/a</ispartof><rights>2024. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1941-25f7d1c062535a44a297451f58e8cdb02ce05b7ac8ead343ad3995362dfa27373</cites><orcidid>0000-0001-7729-7402 ; 0000-0001-9210-7574 ; 0000-0002-2832-1135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023JE008268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023JE008268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Devienne, José A. P. M.</creatorcontrib><creatorcontrib>Berndt, Thomas A.</creatorcontrib><creatorcontrib>Williams, Wyn</creatorcontrib><creatorcontrib>Chen, Shichu</creatorcontrib><title>From Disorder to Order: Inheritance of Magnetic Remanence in Tetrataenite‐Bearing Meteorites From Multi‐Phase Micromagnetic Modeling</title><title>Journal of geophysical research. Planets</title><description>An increasing amount of evidence suggests that the tetrataenite‐bearing cloudy zones (CZ) in iron and stony‐iron meteorites can preserve magnetic records of ancient magnetic activity of their parent bodies over solar system timescales. Tetrataenite islands in the CZ are nanometer‐sized (&lt;200 nm) crystals that usually form through ordering from precursor taenite islands upon extremely slow cooling through 320°C. Recent micromagnetic models have shown that such precursor taenite islands form highly thermally stable single‐domain (SD) or single‐vortex states (SV). In this work we employ a 3D finite element multi‐phase micromagnetic modeling to show that tetrataenite inherits the magnetic remanence of taenite precursor when it forms over underlying SD states. When taenite forms SV states, however, tetrataenite resets the precursor magnetization and records a new remanence through chemical ordering at 320°C. We further assess the thermal stability of tetrataenite islands. We show that in cases where tetrataenite inherits the domain states of its precursor taenite, the origin of the remanence can be up to ∼105 years older than previously thought in fast‐cooled meteorites, and ∼1–≳6 Myr in slowly cooled meteorites. It indicates, therefore, that different regions across slowly cooled CZ record distinct stages of planetary formation. Plain Language Summary Meteorites are fragments of other planetary bodies. They can give us unique insights about how extraterrestrial bodies formed and evolved, and if these bodies have once had a liquid core capable of generating magnetic fields. Nanometer‐sized FeNi particles formed within meteorite metal can retain a magnetic memory of planetary fields. By assessing a meteorite's magnetic memory we can then understand the internal conditions prevailing within their parent bodies. In this work we use numerical models to show that meteorites can retain magnetic signals of different periods of their parent body's formation and evolution. Inspired by our findings, we also point toward potential pathways to optimize FeNi‐based nanoparticles for technological applications. Key Points Single‐domain states formed in taenite precursor are preserved through tetrataenite chemical ordering Inheritance of remanence in fast‐cooled Iron meteorites impacts both the timing and intensity of the recorded paleomagnetic field Time‐resolved records in slowly cooled Iron meteorites are possible through different recording mechanisms in different grain sizes</description><subject>Crystals</subject><subject>Evolution</subject><subject>Iron meteorites</subject><subject>Islands</subject><subject>Magnetic fields</subject><subject>Magnetic signals</subject><subject>magnetic stability</subject><subject>Mathematical models</subject><subject>Meteorite parent bodies</subject><subject>Meteorites</subject><subject>Meteors &amp; meteorites</subject><subject>micromagnetics</subject><subject>Nanoparticles</subject><subject>Numerical models</subject><subject>Planet formation</subject><subject>Precursors</subject><subject>Remanence</subject><subject>Solar system</subject><subject>taenite</subject><subject>tetrataenite</subject><subject>Thermal stability</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAjEUhSdGEwmy8wGauHW0PzPTqTtFQAgTDMH1pMzcgZKhg22JYefSpc_ok1hEEld20d6cfufcmxsElwTfEEzFLcWUjXoYpzRJT4IWJYkIBcH49Fhjwc-DjrUr7E_qJcJawUffNGv0qGxjSjDINWiyL-7QUC_BKCd1AaipUCYXGpwq0BTWUsNeVRrNwBnpJGjl4Ov98wGkUXqBMnDQeDNY9BOfbWun_P_zUlpAmSq8eMzLmhJqb7oIzipZW-j8vu3gpd-bdZ_C8WQw7N6Pw4KIiIQ0rnhJCpzQmMUyiiQVPIpJFaeQFuUc0wJwPOeySEGWLGL-EiJmCS0rSTnjrB1cHXI3pnndgnX5qtka7VvmDHNKGeMce-r6QPlRrTVQ5Ruj1tLscoLz_brzv-v2ODvgb6qG3b9sPhpMe5TGlLBvwkSDaw</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Devienne, José A. P. M.</creator><creator>Berndt, Thomas A.</creator><creator>Williams, Wyn</creator><creator>Chen, Shichu</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7729-7402</orcidid><orcidid>https://orcid.org/0000-0001-9210-7574</orcidid><orcidid>https://orcid.org/0000-0002-2832-1135</orcidid></search><sort><creationdate>202406</creationdate><title>From Disorder to Order: Inheritance of Magnetic Remanence in Tetrataenite‐Bearing Meteorites From Multi‐Phase Micromagnetic Modeling</title><author>Devienne, José A. P. M. ; Berndt, Thomas A. ; Williams, Wyn ; Chen, Shichu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1941-25f7d1c062535a44a297451f58e8cdb02ce05b7ac8ead343ad3995362dfa27373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystals</topic><topic>Evolution</topic><topic>Iron meteorites</topic><topic>Islands</topic><topic>Magnetic fields</topic><topic>Magnetic signals</topic><topic>magnetic stability</topic><topic>Mathematical models</topic><topic>Meteorite parent bodies</topic><topic>Meteorites</topic><topic>Meteors &amp; meteorites</topic><topic>micromagnetics</topic><topic>Nanoparticles</topic><topic>Numerical models</topic><topic>Planet formation</topic><topic>Precursors</topic><topic>Remanence</topic><topic>Solar system</topic><topic>taenite</topic><topic>tetrataenite</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devienne, José A. P. M.</creatorcontrib><creatorcontrib>Berndt, Thomas A.</creatorcontrib><creatorcontrib>Williams, Wyn</creatorcontrib><creatorcontrib>Chen, Shichu</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devienne, José A. P. M.</au><au>Berndt, Thomas A.</au><au>Williams, Wyn</au><au>Chen, Shichu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Disorder to Order: Inheritance of Magnetic Remanence in Tetrataenite‐Bearing Meteorites From Multi‐Phase Micromagnetic Modeling</atitle><jtitle>Journal of geophysical research. Planets</jtitle><date>2024-06</date><risdate>2024</risdate><volume>129</volume><issue>6</issue><epage>n/a</epage><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>An increasing amount of evidence suggests that the tetrataenite‐bearing cloudy zones (CZ) in iron and stony‐iron meteorites can preserve magnetic records of ancient magnetic activity of their parent bodies over solar system timescales. Tetrataenite islands in the CZ are nanometer‐sized (&lt;200 nm) crystals that usually form through ordering from precursor taenite islands upon extremely slow cooling through 320°C. Recent micromagnetic models have shown that such precursor taenite islands form highly thermally stable single‐domain (SD) or single‐vortex states (SV). In this work we employ a 3D finite element multi‐phase micromagnetic modeling to show that tetrataenite inherits the magnetic remanence of taenite precursor when it forms over underlying SD states. When taenite forms SV states, however, tetrataenite resets the precursor magnetization and records a new remanence through chemical ordering at 320°C. We further assess the thermal stability of tetrataenite islands. We show that in cases where tetrataenite inherits the domain states of its precursor taenite, the origin of the remanence can be up to ∼105 years older than previously thought in fast‐cooled meteorites, and ∼1–≳6 Myr in slowly cooled meteorites. It indicates, therefore, that different regions across slowly cooled CZ record distinct stages of planetary formation. Plain Language Summary Meteorites are fragments of other planetary bodies. They can give us unique insights about how extraterrestrial bodies formed and evolved, and if these bodies have once had a liquid core capable of generating magnetic fields. Nanometer‐sized FeNi particles formed within meteorite metal can retain a magnetic memory of planetary fields. By assessing a meteorite's magnetic memory we can then understand the internal conditions prevailing within their parent bodies. In this work we use numerical models to show that meteorites can retain magnetic signals of different periods of their parent body's formation and evolution. Inspired by our findings, we also point toward potential pathways to optimize FeNi‐based nanoparticles for technological applications. Key Points Single‐domain states formed in taenite precursor are preserved through tetrataenite chemical ordering Inheritance of remanence in fast‐cooled Iron meteorites impacts both the timing and intensity of the recorded paleomagnetic field Time‐resolved records in slowly cooled Iron meteorites are possible through different recording mechanisms in different grain sizes</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2023JE008268</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7729-7402</orcidid><orcidid>https://orcid.org/0000-0001-9210-7574</orcidid><orcidid>https://orcid.org/0000-0002-2832-1135</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9097
ispartof Journal of geophysical research. Planets, 2024-06, Vol.129 (6), p.n/a
issn 2169-9097
2169-9100
language eng
recordid cdi_proquest_journals_3072233770
source Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Crystals
Evolution
Iron meteorites
Islands
Magnetic fields
Magnetic signals
magnetic stability
Mathematical models
Meteorite parent bodies
Meteorites
Meteors & meteorites
micromagnetics
Nanoparticles
Numerical models
Planet formation
Precursors
Remanence
Solar system
taenite
tetrataenite
Thermal stability
title From Disorder to Order: Inheritance of Magnetic Remanence in Tetrataenite‐Bearing Meteorites From Multi‐Phase Micromagnetic Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Disorder%20to%20Order:%20Inheritance%20of%20Magnetic%20Remanence%20in%20Tetrataenite%E2%80%90Bearing%20Meteorites%20From%20Multi%E2%80%90Phase%20Micromagnetic%20Modeling&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Devienne,%20Jos%C3%A9%20A.%20P.%20M.&rft.date=2024-06&rft.volume=129&rft.issue=6&rft.epage=n/a&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1029/2023JE008268&rft_dat=%3Cproquest_cross%3E3072233770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072233770&rft_id=info:pmid/&rfr_iscdi=true