Poly(glycerol sebacate)-based soft-tissue-mimicked active layers for triboelectric nanogenerators

Herein poly(glycerol sebacate) (PGS) has been synthesized and characterized to identify it’s potential as an active triboelectric layer in implantable and biodegradable TENG devices. The implantable and biodegradable TENG devices require excellent triboelectric properties, as well as the ability to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2024-06, Vol.59 (24), p.10920-10935
Hauptverfasser: Timusk, Martin, Nirwan, Viraj P., Lapčinskis, Linards, Sandberg, Anett, Trei, Annika, Maimets, Toivo, Godiņa, Daniela, Rižikovs, Jānis, Fahmi, Amir, Šutka, Andris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10935
container_issue 24
container_start_page 10920
container_title Journal of materials science
container_volume 59
creator Timusk, Martin
Nirwan, Viraj P.
Lapčinskis, Linards
Sandberg, Anett
Trei, Annika
Maimets, Toivo
Godiņa, Daniela
Rižikovs, Jānis
Fahmi, Amir
Šutka, Andris
description Herein poly(glycerol sebacate) (PGS) has been synthesized and characterized to identify it’s potential as an active triboelectric layer in implantable and biodegradable TENG devices. The implantable and biodegradable TENG devices require excellent triboelectric properties, as well as the ability to mimic the mechanical properties of the surrounding tissues and exhibiting low cytotoxicity and eventual degradation and removal by bio-absorption. Two-step synthesis of PGS was carried out by using polycondensation between glycerol and sebacic acid in 1:1 molar ratio, followed by film preparation by spray-coating of the prepolymer solution. Crosslinking conditions were elaborated to yield good triboelectric performance together with low cytotoxicity. Triboelectric surface charge density of up to 0.188 nC cm −2 was obtained, exceeding the values of common triboelectric materials such as PDMS and PTFE by 2.89 and 3.76 times, respectively, when tested under identical contact-separation parameters. The mechanical properties of PGS can be tuned by varying the crosslinking degree to mimic soft tissues. In this context, in vitro studies on human skin fibroblasts revealed cell viability up to 78%. Furthermore, the cell viability is found to be strongly related to the crosslinking time of the PGS. The results show significantly lower cytotoxicity as compared to, for example, poly(sorbitol sebacate) and poly(hexanediol- co -citric acid). The flexibility and the confirmed biocompatibility beside the unique mechanical and physio-chemical collective properties of the of the polymer demonstrates the potential use of PGS for the next generation of implantable TENG devices. Graphical abstract
doi_str_mv 10.1007/s10853-024-09588-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072099547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072099547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-d44cefeabe2d88741142a64b0ead5254ae3865c84de46bbbf23f2c13279826293</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8FL3qITr7a9CiLX7CgBz2HJJ0uXbvNmmSF_fdWK3jzNMPwvO_AQ8g5g2sGUN0kBloJClxSqJXWVByQGVOVoFKDOCQzAM4plyU7JicprQFAVZzNiH0J_f5y1e89xtAXCZ31NuMVdTZhU6TQZpq7lHZIN92m8-_j0frcfWLR2z3GVLQhFjl2LmCPflx8MdghrHDAaHOI6ZQctbZPePY75-Tt_u518UiXzw9Pi9sl9VzKTBspPbZoHfJG60oyJrktpQO0jeJKWhS6VF7LBmXpnGu5aLlngle15iWvxZxcTL3bGD52mLJZh10cxpdGQMWhrpWsRopPlI8hpYit2cZuY-PeMDDfKs2k0owqzY9KI8aQmEJphIcVxr_qf1JfcXt4cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072099547</pqid></control><display><type>article</type><title>Poly(glycerol sebacate)-based soft-tissue-mimicked active layers for triboelectric nanogenerators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Timusk, Martin ; Nirwan, Viraj P. ; Lapčinskis, Linards ; Sandberg, Anett ; Trei, Annika ; Maimets, Toivo ; Godiņa, Daniela ; Rižikovs, Jānis ; Fahmi, Amir ; Šutka, Andris</creator><creatorcontrib>Timusk, Martin ; Nirwan, Viraj P. ; Lapčinskis, Linards ; Sandberg, Anett ; Trei, Annika ; Maimets, Toivo ; Godiņa, Daniela ; Rižikovs, Jānis ; Fahmi, Amir ; Šutka, Andris</creatorcontrib><description>Herein poly(glycerol sebacate) (PGS) has been synthesized and characterized to identify it’s potential as an active triboelectric layer in implantable and biodegradable TENG devices. The implantable and biodegradable TENG devices require excellent triboelectric properties, as well as the ability to mimic the mechanical properties of the surrounding tissues and exhibiting low cytotoxicity and eventual degradation and removal by bio-absorption. Two-step synthesis of PGS was carried out by using polycondensation between glycerol and sebacic acid in 1:1 molar ratio, followed by film preparation by spray-coating of the prepolymer solution. Crosslinking conditions were elaborated to yield good triboelectric performance together with low cytotoxicity. Triboelectric surface charge density of up to 0.188 nC cm −2 was obtained, exceeding the values of common triboelectric materials such as PDMS and PTFE by 2.89 and 3.76 times, respectively, when tested under identical contact-separation parameters. The mechanical properties of PGS can be tuned by varying the crosslinking degree to mimic soft tissues. In this context, in vitro studies on human skin fibroblasts revealed cell viability up to 78%. Furthermore, the cell viability is found to be strongly related to the crosslinking time of the PGS. The results show significantly lower cytotoxicity as compared to, for example, poly(sorbitol sebacate) and poly(hexanediol- co -citric acid). The flexibility and the confirmed biocompatibility beside the unique mechanical and physio-chemical collective properties of the of the polymer demonstrates the potential use of PGS for the next generation of implantable TENG devices. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-09588-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biocompatibility ; Characterization and Evaluation of Materials ; Charge density ; Chemistry and Materials Science ; Citric acid ; Classical Mechanics ; Crosslinking ; Crystallography and Scattering Methods ; Cytotoxicity ; Energy Materials ; Glycerol ; Materials Science ; Mechanical properties ; Nanogenerators ; Polymer Sciences ; Prepolymers ; Sebacic acid ; Soft tissues ; Solid Mechanics ; Sorbitol ; Surface charge ; Toxicity</subject><ispartof>Journal of materials science, 2024-06, Vol.59 (24), p.10920-10935</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-d44cefeabe2d88741142a64b0ead5254ae3865c84de46bbbf23f2c13279826293</cites><orcidid>0000-0003-4986-6262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-09588-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-09588-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Timusk, Martin</creatorcontrib><creatorcontrib>Nirwan, Viraj P.</creatorcontrib><creatorcontrib>Lapčinskis, Linards</creatorcontrib><creatorcontrib>Sandberg, Anett</creatorcontrib><creatorcontrib>Trei, Annika</creatorcontrib><creatorcontrib>Maimets, Toivo</creatorcontrib><creatorcontrib>Godiņa, Daniela</creatorcontrib><creatorcontrib>Rižikovs, Jānis</creatorcontrib><creatorcontrib>Fahmi, Amir</creatorcontrib><creatorcontrib>Šutka, Andris</creatorcontrib><title>Poly(glycerol sebacate)-based soft-tissue-mimicked active layers for triboelectric nanogenerators</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Herein poly(glycerol sebacate) (PGS) has been synthesized and characterized to identify it’s potential as an active triboelectric layer in implantable and biodegradable TENG devices. The implantable and biodegradable TENG devices require excellent triboelectric properties, as well as the ability to mimic the mechanical properties of the surrounding tissues and exhibiting low cytotoxicity and eventual degradation and removal by bio-absorption. Two-step synthesis of PGS was carried out by using polycondensation between glycerol and sebacic acid in 1:1 molar ratio, followed by film preparation by spray-coating of the prepolymer solution. Crosslinking conditions were elaborated to yield good triboelectric performance together with low cytotoxicity. Triboelectric surface charge density of up to 0.188 nC cm −2 was obtained, exceeding the values of common triboelectric materials such as PDMS and PTFE by 2.89 and 3.76 times, respectively, when tested under identical contact-separation parameters. The mechanical properties of PGS can be tuned by varying the crosslinking degree to mimic soft tissues. In this context, in vitro studies on human skin fibroblasts revealed cell viability up to 78%. Furthermore, the cell viability is found to be strongly related to the crosslinking time of the PGS. The results show significantly lower cytotoxicity as compared to, for example, poly(sorbitol sebacate) and poly(hexanediol- co -citric acid). The flexibility and the confirmed biocompatibility beside the unique mechanical and physio-chemical collective properties of the of the polymer demonstrates the potential use of PGS for the next generation of implantable TENG devices. Graphical abstract</description><subject>Biocompatibility</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge density</subject><subject>Chemistry and Materials Science</subject><subject>Citric acid</subject><subject>Classical Mechanics</subject><subject>Crosslinking</subject><subject>Crystallography and Scattering Methods</subject><subject>Cytotoxicity</subject><subject>Energy Materials</subject><subject>Glycerol</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanogenerators</subject><subject>Polymer Sciences</subject><subject>Prepolymers</subject><subject>Sebacic acid</subject><subject>Soft tissues</subject><subject>Solid Mechanics</subject><subject>Sorbitol</subject><subject>Surface charge</subject><subject>Toxicity</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8FL3qITr7a9CiLX7CgBz2HJJ0uXbvNmmSF_fdWK3jzNMPwvO_AQ8g5g2sGUN0kBloJClxSqJXWVByQGVOVoFKDOCQzAM4plyU7JicprQFAVZzNiH0J_f5y1e89xtAXCZ31NuMVdTZhU6TQZpq7lHZIN92m8-_j0frcfWLR2z3GVLQhFjl2LmCPflx8MdghrHDAaHOI6ZQctbZPePY75-Tt_u518UiXzw9Pi9sl9VzKTBspPbZoHfJG60oyJrktpQO0jeJKWhS6VF7LBmXpnGu5aLlngle15iWvxZxcTL3bGD52mLJZh10cxpdGQMWhrpWsRopPlI8hpYit2cZuY-PeMDDfKs2k0owqzY9KI8aQmEJphIcVxr_qf1JfcXt4cA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Timusk, Martin</creator><creator>Nirwan, Viraj P.</creator><creator>Lapčinskis, Linards</creator><creator>Sandberg, Anett</creator><creator>Trei, Annika</creator><creator>Maimets, Toivo</creator><creator>Godiņa, Daniela</creator><creator>Rižikovs, Jānis</creator><creator>Fahmi, Amir</creator><creator>Šutka, Andris</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4986-6262</orcidid></search><sort><creationdate>20240601</creationdate><title>Poly(glycerol sebacate)-based soft-tissue-mimicked active layers for triboelectric nanogenerators</title><author>Timusk, Martin ; Nirwan, Viraj P. ; Lapčinskis, Linards ; Sandberg, Anett ; Trei, Annika ; Maimets, Toivo ; Godiņa, Daniela ; Rižikovs, Jānis ; Fahmi, Amir ; Šutka, Andris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-d44cefeabe2d88741142a64b0ead5254ae3865c84de46bbbf23f2c13279826293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge density</topic><topic>Chemistry and Materials Science</topic><topic>Citric acid</topic><topic>Classical Mechanics</topic><topic>Crosslinking</topic><topic>Crystallography and Scattering Methods</topic><topic>Cytotoxicity</topic><topic>Energy Materials</topic><topic>Glycerol</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanogenerators</topic><topic>Polymer Sciences</topic><topic>Prepolymers</topic><topic>Sebacic acid</topic><topic>Soft tissues</topic><topic>Solid Mechanics</topic><topic>Sorbitol</topic><topic>Surface charge</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timusk, Martin</creatorcontrib><creatorcontrib>Nirwan, Viraj P.</creatorcontrib><creatorcontrib>Lapčinskis, Linards</creatorcontrib><creatorcontrib>Sandberg, Anett</creatorcontrib><creatorcontrib>Trei, Annika</creatorcontrib><creatorcontrib>Maimets, Toivo</creatorcontrib><creatorcontrib>Godiņa, Daniela</creatorcontrib><creatorcontrib>Rižikovs, Jānis</creatorcontrib><creatorcontrib>Fahmi, Amir</creatorcontrib><creatorcontrib>Šutka, Andris</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timusk, Martin</au><au>Nirwan, Viraj P.</au><au>Lapčinskis, Linards</au><au>Sandberg, Anett</au><au>Trei, Annika</au><au>Maimets, Toivo</au><au>Godiņa, Daniela</au><au>Rižikovs, Jānis</au><au>Fahmi, Amir</au><au>Šutka, Andris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(glycerol sebacate)-based soft-tissue-mimicked active layers for triboelectric nanogenerators</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>59</volume><issue>24</issue><spage>10920</spage><epage>10935</epage><pages>10920-10935</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Herein poly(glycerol sebacate) (PGS) has been synthesized and characterized to identify it’s potential as an active triboelectric layer in implantable and biodegradable TENG devices. The implantable and biodegradable TENG devices require excellent triboelectric properties, as well as the ability to mimic the mechanical properties of the surrounding tissues and exhibiting low cytotoxicity and eventual degradation and removal by bio-absorption. Two-step synthesis of PGS was carried out by using polycondensation between glycerol and sebacic acid in 1:1 molar ratio, followed by film preparation by spray-coating of the prepolymer solution. Crosslinking conditions were elaborated to yield good triboelectric performance together with low cytotoxicity. Triboelectric surface charge density of up to 0.188 nC cm −2 was obtained, exceeding the values of common triboelectric materials such as PDMS and PTFE by 2.89 and 3.76 times, respectively, when tested under identical contact-separation parameters. The mechanical properties of PGS can be tuned by varying the crosslinking degree to mimic soft tissues. In this context, in vitro studies on human skin fibroblasts revealed cell viability up to 78%. Furthermore, the cell viability is found to be strongly related to the crosslinking time of the PGS. The results show significantly lower cytotoxicity as compared to, for example, poly(sorbitol sebacate) and poly(hexanediol- co -citric acid). The flexibility and the confirmed biocompatibility beside the unique mechanical and physio-chemical collective properties of the of the polymer demonstrates the potential use of PGS for the next generation of implantable TENG devices. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-09588-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4986-6262</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2024-06, Vol.59 (24), p.10920-10935
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_3072099547
source SpringerLink Journals - AutoHoldings
subjects Biocompatibility
Characterization and Evaluation of Materials
Charge density
Chemistry and Materials Science
Citric acid
Classical Mechanics
Crosslinking
Crystallography and Scattering Methods
Cytotoxicity
Energy Materials
Glycerol
Materials Science
Mechanical properties
Nanogenerators
Polymer Sciences
Prepolymers
Sebacic acid
Soft tissues
Solid Mechanics
Sorbitol
Surface charge
Toxicity
title Poly(glycerol sebacate)-based soft-tissue-mimicked active layers for triboelectric nanogenerators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(glycerol%20sebacate)-based%20soft-tissue-mimicked%20active%20layers%20for%20triboelectric%20nanogenerators&rft.jtitle=Journal%20of%20materials%20science&rft.au=Timusk,%20Martin&rft.date=2024-06-01&rft.volume=59&rft.issue=24&rft.spage=10920&rft.epage=10935&rft.pages=10920-10935&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-09588-3&rft_dat=%3Cproquest_cross%3E3072099547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072099547&rft_id=info:pmid/&rfr_iscdi=true