Developing a Fluvial and Pluvial Stochastic Flood Model of Southeast Asia
Flood event set generation, as employed in catastrophe risk models, relies on gauge information that is not available in data‐scarce regions. To overcome this limitation, we develop a stochastic fluvial and pluvial flood model of Southeast Asia, using freely and globally available discharge data fro...
Gespeichert in:
Veröffentlicht in: | Water resources research 2024-06, Vol.60 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Water resources research |
container_volume | 60 |
creator | Olcese, Gaia Bates, Paul D. Neal, Jeffrey C. Sampson, Christopher C. Wing, Oliver E. J. Quinn, Niall Murphy‐Barltrop, Callum J. R. Probyn, Izzy |
description | Flood event set generation, as employed in catastrophe risk models, relies on gauge information that is not available in data‐scarce regions. To overcome this limitation, we develop a stochastic fluvial and pluvial flood model of Southeast Asia, using freely and globally available discharge data from the global hydrological model GloFAS and rainfall from the ERA5 reanalysis. We use a conditional multivariate statistical model to produce a synthetic catalog of 10,000 years of flood events. We calculate the flood population exposure associated with each flood event using freely available population data from WorldPop and generate exposure probability exceedance curves. We validate the population exposure curves against observed flood disaster data from EM‐DAT, showing that our methodology provides exposure estimates that are in line with historical observations. We find that there is a 1% probability that more than 30 million people will be exposed to flooding in a given year according to our event set. This number is roughly half the population living in the 100‐year return period flood zone of Fathom's hazard maps, suggesting most studies based on static flood maps overestimate exposure. This analysis provides significant progress over previous non‐stochastic studies which are only able to compute total or average exposure within a given floodplain area and demonstrates that a reanalysis‐based stochastic flood model can be designed to generate reliable estimates of population exposure probability exceedance. This study is a step toward a fully global catastrophe model for floods capable of providing exposure and loss estimates worldwide.
Key Points
Global hydrological models can be used to drive a large‐scale stochastic flood inundation model in Southeast Asia
A reanalysis‐based stochastic flood model generates realistic flood events
The computed flood exposure exceedance curve for Southeast Asia compares well to the EM‐DAT database |
doi_str_mv | 10.1029/2023WR036580 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072088017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072088017</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2553-ff7e06deacfde6daffd1900922df3db44795936cbeea51e23bbbc293e2e9506c3</originalsourceid><addsrcrecordid>eNp90MFKw0AQBuBFFKzVmw-w4NXo7E6S7R5LtbVQUVqlx7DJztqU2K3ZpNK3N9IePHmagf9jBn7GrgXcCZD6XoLE5RwwTQZwwnpCx3GktMJT1gOIMRKo1Tm7CGENIOIkVT02faAdVX5bbj644eOq3ZWm4mZj-etxXzS-WJnQlEUXe2_5s7dUce_4wrfNirqID0NpLtmZM1Wgq-Pss_fx49voKZq9TKaj4SwyMkkwck4RpJZM4Syl1jhnhQbQUlqHNo9jpRONaZETmUSQxDzPC6mRJOkE0gL77OZwd1v7r5ZCk619W2-6lxmCkjAYgFCduj2oovYh1OSybV1-mnqfCch-y8r-ltVxPPDvsqL9vzZbzkdzqaRC_AEimGs0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072088017</pqid></control><display><type>article</type><title>Developing a Fluvial and Pluvial Stochastic Flood Model of Southeast Asia</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Olcese, Gaia ; Bates, Paul D. ; Neal, Jeffrey C. ; Sampson, Christopher C. ; Wing, Oliver E. J. ; Quinn, Niall ; Murphy‐Barltrop, Callum J. R. ; Probyn, Izzy</creator><creatorcontrib>Olcese, Gaia ; Bates, Paul D. ; Neal, Jeffrey C. ; Sampson, Christopher C. ; Wing, Oliver E. J. ; Quinn, Niall ; Murphy‐Barltrop, Callum J. R. ; Probyn, Izzy</creatorcontrib><description>Flood event set generation, as employed in catastrophe risk models, relies on gauge information that is not available in data‐scarce regions. To overcome this limitation, we develop a stochastic fluvial and pluvial flood model of Southeast Asia, using freely and globally available discharge data from the global hydrological model GloFAS and rainfall from the ERA5 reanalysis. We use a conditional multivariate statistical model to produce a synthetic catalog of 10,000 years of flood events. We calculate the flood population exposure associated with each flood event using freely available population data from WorldPop and generate exposure probability exceedance curves. We validate the population exposure curves against observed flood disaster data from EM‐DAT, showing that our methodology provides exposure estimates that are in line with historical observations. We find that there is a 1% probability that more than 30 million people will be exposed to flooding in a given year according to our event set. This number is roughly half the population living in the 100‐year return period flood zone of Fathom's hazard maps, suggesting most studies based on static flood maps overestimate exposure. This analysis provides significant progress over previous non‐stochastic studies which are only able to compute total or average exposure within a given floodplain area and demonstrates that a reanalysis‐based stochastic flood model can be designed to generate reliable estimates of population exposure probability exceedance. This study is a step toward a fully global catastrophe model for floods capable of providing exposure and loss estimates worldwide.
Key Points
Global hydrological models can be used to drive a large‐scale stochastic flood inundation model in Southeast Asia
A reanalysis‐based stochastic flood model generates realistic flood events
The computed flood exposure exceedance curve for Southeast Asia compares well to the EM‐DAT database</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2023WR036580</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>100 year floods ; Estimates ; Exposure ; flood ; Floodplains ; Floods ; global hydrological models ; Hydrologic models ; population exposure ; Population statistics ; Population studies ; Probability theory ; Rainfall ; Southeast Asia ; Statistical analysis ; Statistical models ; stochastic modeling ; Stochasticity</subject><ispartof>Water resources research, 2024-06, Vol.60 (6), p.n/a</ispartof><rights>2024. The Authors.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a2553-ff7e06deacfde6daffd1900922df3db44795936cbeea51e23bbbc293e2e9506c3</cites><orcidid>0000-0001-9192-9963 ; 0000-0001-5793-9594 ; 0000-0002-3834-7144 ; 0009-0008-7853-5597 ; 0000-0001-8676-608X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023WR036580$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023WR036580$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,1419,11523,11571,27933,27934,45583,45584,46061,46477,46485,46901</link.rule.ids></links><search><creatorcontrib>Olcese, Gaia</creatorcontrib><creatorcontrib>Bates, Paul D.</creatorcontrib><creatorcontrib>Neal, Jeffrey C.</creatorcontrib><creatorcontrib>Sampson, Christopher C.</creatorcontrib><creatorcontrib>Wing, Oliver E. J.</creatorcontrib><creatorcontrib>Quinn, Niall</creatorcontrib><creatorcontrib>Murphy‐Barltrop, Callum J. R.</creatorcontrib><creatorcontrib>Probyn, Izzy</creatorcontrib><title>Developing a Fluvial and Pluvial Stochastic Flood Model of Southeast Asia</title><title>Water resources research</title><description>Flood event set generation, as employed in catastrophe risk models, relies on gauge information that is not available in data‐scarce regions. To overcome this limitation, we develop a stochastic fluvial and pluvial flood model of Southeast Asia, using freely and globally available discharge data from the global hydrological model GloFAS and rainfall from the ERA5 reanalysis. We use a conditional multivariate statistical model to produce a synthetic catalog of 10,000 years of flood events. We calculate the flood population exposure associated with each flood event using freely available population data from WorldPop and generate exposure probability exceedance curves. We validate the population exposure curves against observed flood disaster data from EM‐DAT, showing that our methodology provides exposure estimates that are in line with historical observations. We find that there is a 1% probability that more than 30 million people will be exposed to flooding in a given year according to our event set. This number is roughly half the population living in the 100‐year return period flood zone of Fathom's hazard maps, suggesting most studies based on static flood maps overestimate exposure. This analysis provides significant progress over previous non‐stochastic studies which are only able to compute total or average exposure within a given floodplain area and demonstrates that a reanalysis‐based stochastic flood model can be designed to generate reliable estimates of population exposure probability exceedance. This study is a step toward a fully global catastrophe model for floods capable of providing exposure and loss estimates worldwide.
Key Points
Global hydrological models can be used to drive a large‐scale stochastic flood inundation model in Southeast Asia
A reanalysis‐based stochastic flood model generates realistic flood events
The computed flood exposure exceedance curve for Southeast Asia compares well to the EM‐DAT database</description><subject>100 year floods</subject><subject>Estimates</subject><subject>Exposure</subject><subject>flood</subject><subject>Floodplains</subject><subject>Floods</subject><subject>global hydrological models</subject><subject>Hydrologic models</subject><subject>population exposure</subject><subject>Population statistics</subject><subject>Population studies</subject><subject>Probability theory</subject><subject>Rainfall</subject><subject>Southeast Asia</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>stochastic modeling</subject><subject>Stochasticity</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90MFKw0AQBuBFFKzVmw-w4NXo7E6S7R5LtbVQUVqlx7DJztqU2K3ZpNK3N9IePHmagf9jBn7GrgXcCZD6XoLE5RwwTQZwwnpCx3GktMJT1gOIMRKo1Tm7CGENIOIkVT02faAdVX5bbj644eOq3ZWm4mZj-etxXzS-WJnQlEUXe2_5s7dUce_4wrfNirqID0NpLtmZM1Wgq-Pss_fx49voKZq9TKaj4SwyMkkwck4RpJZM4Syl1jhnhQbQUlqHNo9jpRONaZETmUSQxDzPC6mRJOkE0gL77OZwd1v7r5ZCk619W2-6lxmCkjAYgFCduj2oovYh1OSybV1-mnqfCch-y8r-ltVxPPDvsqL9vzZbzkdzqaRC_AEimGs0</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Olcese, Gaia</creator><creator>Bates, Paul D.</creator><creator>Neal, Jeffrey C.</creator><creator>Sampson, Christopher C.</creator><creator>Wing, Oliver E. J.</creator><creator>Quinn, Niall</creator><creator>Murphy‐Barltrop, Callum J. R.</creator><creator>Probyn, Izzy</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9192-9963</orcidid><orcidid>https://orcid.org/0000-0001-5793-9594</orcidid><orcidid>https://orcid.org/0000-0002-3834-7144</orcidid><orcidid>https://orcid.org/0009-0008-7853-5597</orcidid><orcidid>https://orcid.org/0000-0001-8676-608X</orcidid></search><sort><creationdate>202406</creationdate><title>Developing a Fluvial and Pluvial Stochastic Flood Model of Southeast Asia</title><author>Olcese, Gaia ; Bates, Paul D. ; Neal, Jeffrey C. ; Sampson, Christopher C. ; Wing, Oliver E. J. ; Quinn, Niall ; Murphy‐Barltrop, Callum J. R. ; Probyn, Izzy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2553-ff7e06deacfde6daffd1900922df3db44795936cbeea51e23bbbc293e2e9506c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>100 year floods</topic><topic>Estimates</topic><topic>Exposure</topic><topic>flood</topic><topic>Floodplains</topic><topic>Floods</topic><topic>global hydrological models</topic><topic>Hydrologic models</topic><topic>population exposure</topic><topic>Population statistics</topic><topic>Population studies</topic><topic>Probability theory</topic><topic>Rainfall</topic><topic>Southeast Asia</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>stochastic modeling</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olcese, Gaia</creatorcontrib><creatorcontrib>Bates, Paul D.</creatorcontrib><creatorcontrib>Neal, Jeffrey C.</creatorcontrib><creatorcontrib>Sampson, Christopher C.</creatorcontrib><creatorcontrib>Wing, Oliver E. J.</creatorcontrib><creatorcontrib>Quinn, Niall</creatorcontrib><creatorcontrib>Murphy‐Barltrop, Callum J. R.</creatorcontrib><creatorcontrib>Probyn, Izzy</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olcese, Gaia</au><au>Bates, Paul D.</au><au>Neal, Jeffrey C.</au><au>Sampson, Christopher C.</au><au>Wing, Oliver E. J.</au><au>Quinn, Niall</au><au>Murphy‐Barltrop, Callum J. R.</au><au>Probyn, Izzy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing a Fluvial and Pluvial Stochastic Flood Model of Southeast Asia</atitle><jtitle>Water resources research</jtitle><date>2024-06</date><risdate>2024</risdate><volume>60</volume><issue>6</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Flood event set generation, as employed in catastrophe risk models, relies on gauge information that is not available in data‐scarce regions. To overcome this limitation, we develop a stochastic fluvial and pluvial flood model of Southeast Asia, using freely and globally available discharge data from the global hydrological model GloFAS and rainfall from the ERA5 reanalysis. We use a conditional multivariate statistical model to produce a synthetic catalog of 10,000 years of flood events. We calculate the flood population exposure associated with each flood event using freely available population data from WorldPop and generate exposure probability exceedance curves. We validate the population exposure curves against observed flood disaster data from EM‐DAT, showing that our methodology provides exposure estimates that are in line with historical observations. We find that there is a 1% probability that more than 30 million people will be exposed to flooding in a given year according to our event set. This number is roughly half the population living in the 100‐year return period flood zone of Fathom's hazard maps, suggesting most studies based on static flood maps overestimate exposure. This analysis provides significant progress over previous non‐stochastic studies which are only able to compute total or average exposure within a given floodplain area and demonstrates that a reanalysis‐based stochastic flood model can be designed to generate reliable estimates of population exposure probability exceedance. This study is a step toward a fully global catastrophe model for floods capable of providing exposure and loss estimates worldwide.
Key Points
Global hydrological models can be used to drive a large‐scale stochastic flood inundation model in Southeast Asia
A reanalysis‐based stochastic flood model generates realistic flood events
The computed flood exposure exceedance curve for Southeast Asia compares well to the EM‐DAT database</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2023WR036580</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9192-9963</orcidid><orcidid>https://orcid.org/0000-0001-5793-9594</orcidid><orcidid>https://orcid.org/0000-0002-3834-7144</orcidid><orcidid>https://orcid.org/0009-0008-7853-5597</orcidid><orcidid>https://orcid.org/0000-0001-8676-608X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2024-06, Vol.60 (6), p.n/a |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_journals_3072088017 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection) |
subjects | 100 year floods Estimates Exposure flood Floodplains Floods global hydrological models Hydrologic models population exposure Population statistics Population studies Probability theory Rainfall Southeast Asia Statistical analysis Statistical models stochastic modeling Stochasticity |
title | Developing a Fluvial and Pluvial Stochastic Flood Model of Southeast Asia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T01%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20a%20Fluvial%20and%20Pluvial%20Stochastic%20Flood%20Model%20of%20Southeast%20Asia&rft.jtitle=Water%20resources%20research&rft.au=Olcese,%20Gaia&rft.date=2024-06&rft.volume=60&rft.issue=6&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2023WR036580&rft_dat=%3Cproquest_cross%3E3072088017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072088017&rft_id=info:pmid/&rfr_iscdi=true |