Testing the Ampère–Maxwell law on the photon mass and Lorentz symmetry violation with MMS multi-spacecraft data

We investigate possible evidence from Extended Theories of Electro-Magnetism (ETEM) by looking for deviations from the Ampère–Maxwell law. The photon, main messenger for interpreting the universe, is the only free massless particle in the Standard Model (SM). Indeed, the deviations may be due to a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2024-06, Vol.139 (6), p.551, Article 551
Hauptverfasser: Spallicci, Alessandro D. A. M., Sarracino, Giuseppe, Randriamboarison, Orélien, Helayël-Neto, José A., Dib, Abedennour
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 551
container_title European physical journal plus
container_volume 139
creator Spallicci, Alessandro D. A. M.
Sarracino, Giuseppe
Randriamboarison, Orélien
Helayël-Neto, José A.
Dib, Abedennour
description We investigate possible evidence from Extended Theories of Electro-Magnetism (ETEM) by looking for deviations from the Ampère–Maxwell law. The photon, main messenger for interpreting the universe, is the only free massless particle in the Standard Model (SM). Indeed, the deviations may be due to a photon mass for the de Broglie–Proca (dBP) theory or the Lorentz Symmetry Violation (LSV) in the SM extension (SME), but also to non-linearities from theories as of Born–Infeld and Heisenberg–Euler. With this aim, we have analysed 6 years of data of the Magnetospheric Multi-Scale (MMS) mission, which is a four-satellite constellation, crossing mostly turbulent regions of magnetic reconnection and collecting about 95% of the downloaded data, outside the solar wind. We examined 3.8 million data points from the solar wind, magnetosheath, and magnetosphere regions. In a minority of cases, for the highest time resolution burst data and optimal tetrahedron configurations drawn by the four spacecraft, deviations have been found ( 2.2 % in modulus and 4.8 % in Cartesian components for all regions, but raising up in the solar wind alone to 20.8 % in modulus and 29.7 % in Cartesian components and up to 45.2% in the extreme low-mass range). The deviations might be due to unaccounted experimental errors or, less likely, to non-Maxwellian contributions, for which we have inferred the related parameters for the dBP and SME cases. Possibly, we are at the boundaries of measurability for non-dedicated missions. We discuss our experimental results (upper limit of photon mass of 2.1 × 10 - 51 kg, and of the LSV parameter | k → AF | of 6 × 10 - 9 m - 1 ), and the deviations in the solar wind, versus more stringent but model-dependent limits.
doi_str_mv 10.1140/epjp/s13360-024-05200-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072086074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072086074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-2943b2d70499704f01b2b288a3af1dd750300a2b88e326657bf9d3d562ffd39d3</originalsourceid><addsrcrecordid>eNqFkElOAzEQRVsIJKKQM2CJdZPy0NMyipikRCwIa8vdtpOOesJ2CGHFHbgE9-AmnAQnjQQ7auH6kv-vsl8QnGO4xJjBWHXrbmwxpTGEQFgIEQEI2VEwIDiDMGKMHf_Rp8HI2jX4YhlmGRsEZqGsK5slciuFJnX3-WHU19v7XLxsVVWhSmxR2xwuu1XrvKyFtUg0Es1aoxr3iuyurpUzO_RctpVwpfdsS7dC8_kDqjeVK0PbiUIVRmiHpHDiLDjRorJq9NOHweP11WJ6G87ub-6mk1lYkBRcSDJGcyIT_9TMHxpwTnKSpoIKjaVMIqAAguRpqiiJ4yjJdSapjGKitaReDoOLfm5n2qeN_yZftxvT-JWcQkIgjSFh3pX0rsK01hqleWfKWpgdx8D3jPmeMe8Zc8-YHxjzfTLtk9YnmqUyv_P_i34D5QaE-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072086074</pqid></control><display><type>article</type><title>Testing the Ampère–Maxwell law on the photon mass and Lorentz symmetry violation with MMS multi-spacecraft data</title><source>Springer Online Journals - JUSTICE</source><creator>Spallicci, Alessandro D. A. M. ; Sarracino, Giuseppe ; Randriamboarison, Orélien ; Helayël-Neto, José A. ; Dib, Abedennour</creator><creatorcontrib>Spallicci, Alessandro D. A. M. ; Sarracino, Giuseppe ; Randriamboarison, Orélien ; Helayël-Neto, José A. ; Dib, Abedennour</creatorcontrib><description>We investigate possible evidence from Extended Theories of Electro-Magnetism (ETEM) by looking for deviations from the Ampère–Maxwell law. The photon, main messenger for interpreting the universe, is the only free massless particle in the Standard Model (SM). Indeed, the deviations may be due to a photon mass for the de Broglie–Proca (dBP) theory or the Lorentz Symmetry Violation (LSV) in the SM extension (SME), but also to non-linearities from theories as of Born–Infeld and Heisenberg–Euler. With this aim, we have analysed 6 years of data of the Magnetospheric Multi-Scale (MMS) mission, which is a four-satellite constellation, crossing mostly turbulent regions of magnetic reconnection and collecting about 95% of the downloaded data, outside the solar wind. We examined 3.8 million data points from the solar wind, magnetosheath, and magnetosphere regions. In a minority of cases, for the highest time resolution burst data and optimal tetrahedron configurations drawn by the four spacecraft, deviations have been found ( 2.2 % in modulus and 4.8 % in Cartesian components for all regions, but raising up in the solar wind alone to 20.8 % in modulus and 29.7 % in Cartesian components and up to 45.2% in the extreme low-mass range). The deviations might be due to unaccounted experimental errors or, less likely, to non-Maxwellian contributions, for which we have inferred the related parameters for the dBP and SME cases. Possibly, we are at the boundaries of measurability for non-dedicated missions. We discuss our experimental results (upper limit of photon mass of 2.1 × 10 - 51 kg, and of the LSV parameter | k → AF | of 6 × 10 - 9 m - 1 ), and the deviations in the solar wind, versus more stringent but model-dependent limits.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-024-05200-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Atoms &amp; subatomic particles ; Cartesian coordinates ; Complex Systems ; Condensed Matter Physics ; Dark energy ; Data points ; Deviation ; Gravitational waves ; Magnetism ; Magnetosheath ; Magnetospheres ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Parameters ; Photons ; Physics ; Physics and Astronomy ; Regular Article ; Satellite constellations ; Solar wind ; Spacecraft ; Standard model (particle physics) ; Symmetry ; Tetrahedra ; Theoretical ; Theory of relativity</subject><ispartof>European physical journal plus, 2024-06, Vol.139 (6), p.551, Article 551</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-2943b2d70499704f01b2b288a3af1dd750300a2b88e326657bf9d3d562ffd39d3</cites><orcidid>0000-0002-2612-455X ; 0000-0001-8310-518X ; 0000-0002-8920-4610 ; 0000-0001-9512-1961 ; 0000-0003-0089-5062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-024-05200-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjp/s13360-024-05200-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Spallicci, Alessandro D. A. M.</creatorcontrib><creatorcontrib>Sarracino, Giuseppe</creatorcontrib><creatorcontrib>Randriamboarison, Orélien</creatorcontrib><creatorcontrib>Helayël-Neto, José A.</creatorcontrib><creatorcontrib>Dib, Abedennour</creatorcontrib><title>Testing the Ampère–Maxwell law on the photon mass and Lorentz symmetry violation with MMS multi-spacecraft data</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>We investigate possible evidence from Extended Theories of Electro-Magnetism (ETEM) by looking for deviations from the Ampère–Maxwell law. The photon, main messenger for interpreting the universe, is the only free massless particle in the Standard Model (SM). Indeed, the deviations may be due to a photon mass for the de Broglie–Proca (dBP) theory or the Lorentz Symmetry Violation (LSV) in the SM extension (SME), but also to non-linearities from theories as of Born–Infeld and Heisenberg–Euler. With this aim, we have analysed 6 years of data of the Magnetospheric Multi-Scale (MMS) mission, which is a four-satellite constellation, crossing mostly turbulent regions of magnetic reconnection and collecting about 95% of the downloaded data, outside the solar wind. We examined 3.8 million data points from the solar wind, magnetosheath, and magnetosphere regions. In a minority of cases, for the highest time resolution burst data and optimal tetrahedron configurations drawn by the four spacecraft, deviations have been found ( 2.2 % in modulus and 4.8 % in Cartesian components for all regions, but raising up in the solar wind alone to 20.8 % in modulus and 29.7 % in Cartesian components and up to 45.2% in the extreme low-mass range). The deviations might be due to unaccounted experimental errors or, less likely, to non-Maxwellian contributions, for which we have inferred the related parameters for the dBP and SME cases. Possibly, we are at the boundaries of measurability for non-dedicated missions. We discuss our experimental results (upper limit of photon mass of 2.1 × 10 - 51 kg, and of the LSV parameter | k → AF | of 6 × 10 - 9 m - 1 ), and the deviations in the solar wind, versus more stringent but model-dependent limits.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Atoms &amp; subatomic particles</subject><subject>Cartesian coordinates</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Dark energy</subject><subject>Data points</subject><subject>Deviation</subject><subject>Gravitational waves</subject><subject>Magnetism</subject><subject>Magnetosheath</subject><subject>Magnetospheres</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Satellite constellations</subject><subject>Solar wind</subject><subject>Spacecraft</subject><subject>Standard model (particle physics)</subject><subject>Symmetry</subject><subject>Tetrahedra</subject><subject>Theoretical</subject><subject>Theory of relativity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkElOAzEQRVsIJKKQM2CJdZPy0NMyipikRCwIa8vdtpOOesJ2CGHFHbgE9-AmnAQnjQQ7auH6kv-vsl8QnGO4xJjBWHXrbmwxpTGEQFgIEQEI2VEwIDiDMGKMHf_Rp8HI2jX4YhlmGRsEZqGsK5slciuFJnX3-WHU19v7XLxsVVWhSmxR2xwuu1XrvKyFtUg0Es1aoxr3iuyurpUzO_RctpVwpfdsS7dC8_kDqjeVK0PbiUIVRmiHpHDiLDjRorJq9NOHweP11WJ6G87ub-6mk1lYkBRcSDJGcyIT_9TMHxpwTnKSpoIKjaVMIqAAguRpqiiJ4yjJdSapjGKitaReDoOLfm5n2qeN_yZftxvT-JWcQkIgjSFh3pX0rsK01hqleWfKWpgdx8D3jPmeMe8Zc8-YHxjzfTLtk9YnmqUyv_P_i34D5QaE-w</recordid><startdate>20240625</startdate><enddate>20240625</enddate><creator>Spallicci, Alessandro D. A. M.</creator><creator>Sarracino, Giuseppe</creator><creator>Randriamboarison, Orélien</creator><creator>Helayël-Neto, José A.</creator><creator>Dib, Abedennour</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2612-455X</orcidid><orcidid>https://orcid.org/0000-0001-8310-518X</orcidid><orcidid>https://orcid.org/0000-0002-8920-4610</orcidid><orcidid>https://orcid.org/0000-0001-9512-1961</orcidid><orcidid>https://orcid.org/0000-0003-0089-5062</orcidid></search><sort><creationdate>20240625</creationdate><title>Testing the Ampère–Maxwell law on the photon mass and Lorentz symmetry violation with MMS multi-spacecraft data</title><author>Spallicci, Alessandro D. A. M. ; Sarracino, Giuseppe ; Randriamboarison, Orélien ; Helayël-Neto, José A. ; Dib, Abedennour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-2943b2d70499704f01b2b288a3af1dd750300a2b88e326657bf9d3d562ffd39d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Atoms &amp; subatomic particles</topic><topic>Cartesian coordinates</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Dark energy</topic><topic>Data points</topic><topic>Deviation</topic><topic>Gravitational waves</topic><topic>Magnetism</topic><topic>Magnetosheath</topic><topic>Magnetospheres</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Satellite constellations</topic><topic>Solar wind</topic><topic>Spacecraft</topic><topic>Standard model (particle physics)</topic><topic>Symmetry</topic><topic>Tetrahedra</topic><topic>Theoretical</topic><topic>Theory of relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spallicci, Alessandro D. A. M.</creatorcontrib><creatorcontrib>Sarracino, Giuseppe</creatorcontrib><creatorcontrib>Randriamboarison, Orélien</creatorcontrib><creatorcontrib>Helayël-Neto, José A.</creatorcontrib><creatorcontrib>Dib, Abedennour</creatorcontrib><collection>CrossRef</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spallicci, Alessandro D. A. M.</au><au>Sarracino, Giuseppe</au><au>Randriamboarison, Orélien</au><au>Helayël-Neto, José A.</au><au>Dib, Abedennour</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing the Ampère–Maxwell law on the photon mass and Lorentz symmetry violation with MMS multi-spacecraft data</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2024-06-25</date><risdate>2024</risdate><volume>139</volume><issue>6</issue><spage>551</spage><pages>551-</pages><artnum>551</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>We investigate possible evidence from Extended Theories of Electro-Magnetism (ETEM) by looking for deviations from the Ampère–Maxwell law. The photon, main messenger for interpreting the universe, is the only free massless particle in the Standard Model (SM). Indeed, the deviations may be due to a photon mass for the de Broglie–Proca (dBP) theory or the Lorentz Symmetry Violation (LSV) in the SM extension (SME), but also to non-linearities from theories as of Born–Infeld and Heisenberg–Euler. With this aim, we have analysed 6 years of data of the Magnetospheric Multi-Scale (MMS) mission, which is a four-satellite constellation, crossing mostly turbulent regions of magnetic reconnection and collecting about 95% of the downloaded data, outside the solar wind. We examined 3.8 million data points from the solar wind, magnetosheath, and magnetosphere regions. In a minority of cases, for the highest time resolution burst data and optimal tetrahedron configurations drawn by the four spacecraft, deviations have been found ( 2.2 % in modulus and 4.8 % in Cartesian components for all regions, but raising up in the solar wind alone to 20.8 % in modulus and 29.7 % in Cartesian components and up to 45.2% in the extreme low-mass range). The deviations might be due to unaccounted experimental errors or, less likely, to non-Maxwellian contributions, for which we have inferred the related parameters for the dBP and SME cases. Possibly, we are at the boundaries of measurability for non-dedicated missions. We discuss our experimental results (upper limit of photon mass of 2.1 × 10 - 51 kg, and of the LSV parameter | k → AF | of 6 × 10 - 9 m - 1 ), and the deviations in the solar wind, versus more stringent but model-dependent limits.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-024-05200-4</doi><orcidid>https://orcid.org/0000-0002-2612-455X</orcidid><orcidid>https://orcid.org/0000-0001-8310-518X</orcidid><orcidid>https://orcid.org/0000-0002-8920-4610</orcidid><orcidid>https://orcid.org/0000-0001-9512-1961</orcidid><orcidid>https://orcid.org/0000-0003-0089-5062</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2024-06, Vol.139 (6), p.551, Article 551
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_3072086074
source Springer Online Journals - JUSTICE
subjects Applied and Technical Physics
Atomic
Atoms & subatomic particles
Cartesian coordinates
Complex Systems
Condensed Matter Physics
Dark energy
Data points
Deviation
Gravitational waves
Magnetism
Magnetosheath
Magnetospheres
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Parameters
Photons
Physics
Physics and Astronomy
Regular Article
Satellite constellations
Solar wind
Spacecraft
Standard model (particle physics)
Symmetry
Tetrahedra
Theoretical
Theory of relativity
title Testing the Ampère–Maxwell law on the photon mass and Lorentz symmetry violation with MMS multi-spacecraft data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20the%20Amp%C3%A8re%E2%80%93Maxwell%20law%20on%20the%20photon%20mass%20and%20Lorentz%20symmetry%20violation%20with%20MMS%20multi-spacecraft%20data&rft.jtitle=European%20physical%20journal%20plus&rft.au=Spallicci,%20Alessandro%20D.%20A.%20M.&rft.date=2024-06-25&rft.volume=139&rft.issue=6&rft.spage=551&rft.pages=551-&rft.artnum=551&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-024-05200-4&rft_dat=%3Cproquest_cross%3E3072086074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072086074&rft_id=info:pmid/&rfr_iscdi=true