Testing the Ampère–Maxwell law on the photon mass and Lorentz symmetry violation with MMS multi-spacecraft data
We investigate possible evidence from Extended Theories of Electro-Magnetism (ETEM) by looking for deviations from the Ampère–Maxwell law. The photon, main messenger for interpreting the universe, is the only free massless particle in the Standard Model (SM). Indeed, the deviations may be due to a p...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2024-06, Vol.139 (6), p.551, Article 551 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 551 |
container_title | European physical journal plus |
container_volume | 139 |
creator | Spallicci, Alessandro D. A. M. Sarracino, Giuseppe Randriamboarison, Orélien Helayël-Neto, José A. Dib, Abedennour |
description | We investigate possible evidence from Extended Theories of Electro-Magnetism (ETEM) by looking for deviations from the Ampère–Maxwell law. The photon, main messenger for interpreting the universe, is the only free massless particle in the Standard Model (SM). Indeed, the deviations may be due to a photon mass for the de Broglie–Proca (dBP) theory or the Lorentz Symmetry Violation (LSV) in the SM extension (SME), but also to non-linearities from theories as of Born–Infeld and Heisenberg–Euler. With this aim, we have analysed 6 years of data of the Magnetospheric Multi-Scale (MMS) mission, which is a four-satellite constellation, crossing mostly turbulent regions of magnetic reconnection and collecting about 95% of the downloaded data, outside the solar wind. We examined 3.8 million data points from the solar wind, magnetosheath, and magnetosphere regions. In a minority of cases, for the highest time resolution burst data and optimal tetrahedron configurations drawn by the four spacecraft, deviations have been found (
2.2
%
in modulus and
4.8
%
in Cartesian components for all regions, but raising up in the solar wind alone to
20.8
%
in modulus and
29.7
%
in Cartesian components and up to 45.2% in the extreme low-mass range). The deviations might be due to unaccounted experimental errors or, less likely, to non-Maxwellian contributions, for which we have inferred the related parameters for the dBP and SME cases. Possibly, we are at the boundaries of measurability for non-dedicated missions. We discuss our experimental results (upper limit of photon mass of
2.1
×
10
-
51
kg, and of the LSV parameter
|
k
→
AF
|
of
6
×
10
-
9
m
-
1
), and the deviations in the solar wind, versus more stringent but model-dependent limits. |
doi_str_mv | 10.1140/epjp/s13360-024-05200-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072086074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072086074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-2943b2d70499704f01b2b288a3af1dd750300a2b88e326657bf9d3d562ffd39d3</originalsourceid><addsrcrecordid>eNqFkElOAzEQRVsIJKKQM2CJdZPy0NMyipikRCwIa8vdtpOOesJ2CGHFHbgE9-AmnAQnjQQ7auH6kv-vsl8QnGO4xJjBWHXrbmwxpTGEQFgIEQEI2VEwIDiDMGKMHf_Rp8HI2jX4YhlmGRsEZqGsK5slciuFJnX3-WHU19v7XLxsVVWhSmxR2xwuu1XrvKyFtUg0Es1aoxr3iuyurpUzO_RctpVwpfdsS7dC8_kDqjeVK0PbiUIVRmiHpHDiLDjRorJq9NOHweP11WJ6G87ub-6mk1lYkBRcSDJGcyIT_9TMHxpwTnKSpoIKjaVMIqAAguRpqiiJ4yjJdSapjGKitaReDoOLfm5n2qeN_yZftxvT-JWcQkIgjSFh3pX0rsK01hqleWfKWpgdx8D3jPmeMe8Zc8-YHxjzfTLtk9YnmqUyv_P_i34D5QaE-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072086074</pqid></control><display><type>article</type><title>Testing the Ampère–Maxwell law on the photon mass and Lorentz symmetry violation with MMS multi-spacecraft data</title><source>Springer Online Journals - JUSTICE</source><creator>Spallicci, Alessandro D. A. M. ; Sarracino, Giuseppe ; Randriamboarison, Orélien ; Helayël-Neto, José A. ; Dib, Abedennour</creator><creatorcontrib>Spallicci, Alessandro D. A. M. ; Sarracino, Giuseppe ; Randriamboarison, Orélien ; Helayël-Neto, José A. ; Dib, Abedennour</creatorcontrib><description>We investigate possible evidence from Extended Theories of Electro-Magnetism (ETEM) by looking for deviations from the Ampère–Maxwell law. The photon, main messenger for interpreting the universe, is the only free massless particle in the Standard Model (SM). Indeed, the deviations may be due to a photon mass for the de Broglie–Proca (dBP) theory or the Lorentz Symmetry Violation (LSV) in the SM extension (SME), but also to non-linearities from theories as of Born–Infeld and Heisenberg–Euler. With this aim, we have analysed 6 years of data of the Magnetospheric Multi-Scale (MMS) mission, which is a four-satellite constellation, crossing mostly turbulent regions of magnetic reconnection and collecting about 95% of the downloaded data, outside the solar wind. We examined 3.8 million data points from the solar wind, magnetosheath, and magnetosphere regions. In a minority of cases, for the highest time resolution burst data and optimal tetrahedron configurations drawn by the four spacecraft, deviations have been found (
2.2
%
in modulus and
4.8
%
in Cartesian components for all regions, but raising up in the solar wind alone to
20.8
%
in modulus and
29.7
%
in Cartesian components and up to 45.2% in the extreme low-mass range). The deviations might be due to unaccounted experimental errors or, less likely, to non-Maxwellian contributions, for which we have inferred the related parameters for the dBP and SME cases. Possibly, we are at the boundaries of measurability for non-dedicated missions. We discuss our experimental results (upper limit of photon mass of
2.1
×
10
-
51
kg, and of the LSV parameter
|
k
→
AF
|
of
6
×
10
-
9
m
-
1
), and the deviations in the solar wind, versus more stringent but model-dependent limits.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-024-05200-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Atoms & subatomic particles ; Cartesian coordinates ; Complex Systems ; Condensed Matter Physics ; Dark energy ; Data points ; Deviation ; Gravitational waves ; Magnetism ; Magnetosheath ; Magnetospheres ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Parameters ; Photons ; Physics ; Physics and Astronomy ; Regular Article ; Satellite constellations ; Solar wind ; Spacecraft ; Standard model (particle physics) ; Symmetry ; Tetrahedra ; Theoretical ; Theory of relativity</subject><ispartof>European physical journal plus, 2024-06, Vol.139 (6), p.551, Article 551</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-2943b2d70499704f01b2b288a3af1dd750300a2b88e326657bf9d3d562ffd39d3</cites><orcidid>0000-0002-2612-455X ; 0000-0001-8310-518X ; 0000-0002-8920-4610 ; 0000-0001-9512-1961 ; 0000-0003-0089-5062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-024-05200-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjp/s13360-024-05200-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Spallicci, Alessandro D. A. M.</creatorcontrib><creatorcontrib>Sarracino, Giuseppe</creatorcontrib><creatorcontrib>Randriamboarison, Orélien</creatorcontrib><creatorcontrib>Helayël-Neto, José A.</creatorcontrib><creatorcontrib>Dib, Abedennour</creatorcontrib><title>Testing the Ampère–Maxwell law on the photon mass and Lorentz symmetry violation with MMS multi-spacecraft data</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>We investigate possible evidence from Extended Theories of Electro-Magnetism (ETEM) by looking for deviations from the Ampère–Maxwell law. The photon, main messenger for interpreting the universe, is the only free massless particle in the Standard Model (SM). Indeed, the deviations may be due to a photon mass for the de Broglie–Proca (dBP) theory or the Lorentz Symmetry Violation (LSV) in the SM extension (SME), but also to non-linearities from theories as of Born–Infeld and Heisenberg–Euler. With this aim, we have analysed 6 years of data of the Magnetospheric Multi-Scale (MMS) mission, which is a four-satellite constellation, crossing mostly turbulent regions of magnetic reconnection and collecting about 95% of the downloaded data, outside the solar wind. We examined 3.8 million data points from the solar wind, magnetosheath, and magnetosphere regions. In a minority of cases, for the highest time resolution burst data and optimal tetrahedron configurations drawn by the four spacecraft, deviations have been found (
2.2
%
in modulus and
4.8
%
in Cartesian components for all regions, but raising up in the solar wind alone to
20.8
%
in modulus and
29.7
%
in Cartesian components and up to 45.2% in the extreme low-mass range). The deviations might be due to unaccounted experimental errors or, less likely, to non-Maxwellian contributions, for which we have inferred the related parameters for the dBP and SME cases. Possibly, we are at the boundaries of measurability for non-dedicated missions. We discuss our experimental results (upper limit of photon mass of
2.1
×
10
-
51
kg, and of the LSV parameter
|
k
→
AF
|
of
6
×
10
-
9
m
-
1
), and the deviations in the solar wind, versus more stringent but model-dependent limits.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Atoms & subatomic particles</subject><subject>Cartesian coordinates</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Dark energy</subject><subject>Data points</subject><subject>Deviation</subject><subject>Gravitational waves</subject><subject>Magnetism</subject><subject>Magnetosheath</subject><subject>Magnetospheres</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Satellite constellations</subject><subject>Solar wind</subject><subject>Spacecraft</subject><subject>Standard model (particle physics)</subject><subject>Symmetry</subject><subject>Tetrahedra</subject><subject>Theoretical</subject><subject>Theory of relativity</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkElOAzEQRVsIJKKQM2CJdZPy0NMyipikRCwIa8vdtpOOesJ2CGHFHbgE9-AmnAQnjQQ7auH6kv-vsl8QnGO4xJjBWHXrbmwxpTGEQFgIEQEI2VEwIDiDMGKMHf_Rp8HI2jX4YhlmGRsEZqGsK5slciuFJnX3-WHU19v7XLxsVVWhSmxR2xwuu1XrvKyFtUg0Es1aoxr3iuyurpUzO_RctpVwpfdsS7dC8_kDqjeVK0PbiUIVRmiHpHDiLDjRorJq9NOHweP11WJ6G87ub-6mk1lYkBRcSDJGcyIT_9TMHxpwTnKSpoIKjaVMIqAAguRpqiiJ4yjJdSapjGKitaReDoOLfm5n2qeN_yZftxvT-JWcQkIgjSFh3pX0rsK01hqleWfKWpgdx8D3jPmeMe8Zc8-YHxjzfTLtk9YnmqUyv_P_i34D5QaE-w</recordid><startdate>20240625</startdate><enddate>20240625</enddate><creator>Spallicci, Alessandro D. A. M.</creator><creator>Sarracino, Giuseppe</creator><creator>Randriamboarison, Orélien</creator><creator>Helayël-Neto, José A.</creator><creator>Dib, Abedennour</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2612-455X</orcidid><orcidid>https://orcid.org/0000-0001-8310-518X</orcidid><orcidid>https://orcid.org/0000-0002-8920-4610</orcidid><orcidid>https://orcid.org/0000-0001-9512-1961</orcidid><orcidid>https://orcid.org/0000-0003-0089-5062</orcidid></search><sort><creationdate>20240625</creationdate><title>Testing the Ampère–Maxwell law on the photon mass and Lorentz symmetry violation with MMS multi-spacecraft data</title><author>Spallicci, Alessandro D. A. M. ; Sarracino, Giuseppe ; Randriamboarison, Orélien ; Helayël-Neto, José A. ; Dib, Abedennour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-2943b2d70499704f01b2b288a3af1dd750300a2b88e326657bf9d3d562ffd39d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Atoms & subatomic particles</topic><topic>Cartesian coordinates</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Dark energy</topic><topic>Data points</topic><topic>Deviation</topic><topic>Gravitational waves</topic><topic>Magnetism</topic><topic>Magnetosheath</topic><topic>Magnetospheres</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Satellite constellations</topic><topic>Solar wind</topic><topic>Spacecraft</topic><topic>Standard model (particle physics)</topic><topic>Symmetry</topic><topic>Tetrahedra</topic><topic>Theoretical</topic><topic>Theory of relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spallicci, Alessandro D. A. M.</creatorcontrib><creatorcontrib>Sarracino, Giuseppe</creatorcontrib><creatorcontrib>Randriamboarison, Orélien</creatorcontrib><creatorcontrib>Helayël-Neto, José A.</creatorcontrib><creatorcontrib>Dib, Abedennour</creatorcontrib><collection>CrossRef</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spallicci, Alessandro D. A. M.</au><au>Sarracino, Giuseppe</au><au>Randriamboarison, Orélien</au><au>Helayël-Neto, José A.</au><au>Dib, Abedennour</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing the Ampère–Maxwell law on the photon mass and Lorentz symmetry violation with MMS multi-spacecraft data</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2024-06-25</date><risdate>2024</risdate><volume>139</volume><issue>6</issue><spage>551</spage><pages>551-</pages><artnum>551</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>We investigate possible evidence from Extended Theories of Electro-Magnetism (ETEM) by looking for deviations from the Ampère–Maxwell law. The photon, main messenger for interpreting the universe, is the only free massless particle in the Standard Model (SM). Indeed, the deviations may be due to a photon mass for the de Broglie–Proca (dBP) theory or the Lorentz Symmetry Violation (LSV) in the SM extension (SME), but also to non-linearities from theories as of Born–Infeld and Heisenberg–Euler. With this aim, we have analysed 6 years of data of the Magnetospheric Multi-Scale (MMS) mission, which is a four-satellite constellation, crossing mostly turbulent regions of magnetic reconnection and collecting about 95% of the downloaded data, outside the solar wind. We examined 3.8 million data points from the solar wind, magnetosheath, and magnetosphere regions. In a minority of cases, for the highest time resolution burst data and optimal tetrahedron configurations drawn by the four spacecraft, deviations have been found (
2.2
%
in modulus and
4.8
%
in Cartesian components for all regions, but raising up in the solar wind alone to
20.8
%
in modulus and
29.7
%
in Cartesian components and up to 45.2% in the extreme low-mass range). The deviations might be due to unaccounted experimental errors or, less likely, to non-Maxwellian contributions, for which we have inferred the related parameters for the dBP and SME cases. Possibly, we are at the boundaries of measurability for non-dedicated missions. We discuss our experimental results (upper limit of photon mass of
2.1
×
10
-
51
kg, and of the LSV parameter
|
k
→
AF
|
of
6
×
10
-
9
m
-
1
), and the deviations in the solar wind, versus more stringent but model-dependent limits.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-024-05200-4</doi><orcidid>https://orcid.org/0000-0002-2612-455X</orcidid><orcidid>https://orcid.org/0000-0001-8310-518X</orcidid><orcidid>https://orcid.org/0000-0002-8920-4610</orcidid><orcidid>https://orcid.org/0000-0001-9512-1961</orcidid><orcidid>https://orcid.org/0000-0003-0089-5062</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2024-06, Vol.139 (6), p.551, Article 551 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_3072086074 |
source | Springer Online Journals - JUSTICE |
subjects | Applied and Technical Physics Atomic Atoms & subatomic particles Cartesian coordinates Complex Systems Condensed Matter Physics Dark energy Data points Deviation Gravitational waves Magnetism Magnetosheath Magnetospheres Mathematical and Computational Physics Molecular Optical and Plasma Physics Parameters Photons Physics Physics and Astronomy Regular Article Satellite constellations Solar wind Spacecraft Standard model (particle physics) Symmetry Tetrahedra Theoretical Theory of relativity |
title | Testing the Ampère–Maxwell law on the photon mass and Lorentz symmetry violation with MMS multi-spacecraft data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20the%20Amp%C3%A8re%E2%80%93Maxwell%20law%20on%20the%20photon%20mass%20and%20Lorentz%20symmetry%20violation%20with%20MMS%20multi-spacecraft%20data&rft.jtitle=European%20physical%20journal%20plus&rft.au=Spallicci,%20Alessandro%20D.%20A.%20M.&rft.date=2024-06-25&rft.volume=139&rft.issue=6&rft.spage=551&rft.pages=551-&rft.artnum=551&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-024-05200-4&rft_dat=%3Cproquest_cross%3E3072086074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072086074&rft_id=info:pmid/&rfr_iscdi=true |