The \(1\)-nearly vertex independence number of a graph
Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\). A set \(I_0(G) \subseteq V(G)\) is a vertex independent set if no two vertices in \(I_0(G)\) are adjacent in \(G\). We study \(\alpha_1(G)\), which is the maximum cardinality of a set \(I_1(G) \subseteq V(G)\) that contains exactly...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shozi, Zekhaya B |
description | Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\). A set \(I_0(G) \subseteq V(G)\) is a vertex independent set if no two vertices in \(I_0(G)\) are adjacent in \(G\). We study \(\alpha_1(G)\), which is the maximum cardinality of a set \(I_1(G) \subseteq V(G)\) that contains exactly one pair of adjacent vertices of \(G\). We call \(I_1(G)\) a \(1\)-nearly vertex independent set of \(G\) and \(\alpha_1(G)\) a \(1\)-nearly vertex independence number of \(G\). We provide some cases of explicit formulas for \(\alpha_1\). Furthermore, we prove a tight lower (resp. upper) bound on \(\alpha_1\) for graphs of order \(n\). The extremal graphs that achieve equality on each bound are fully characterised. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3072059738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072059738</sourcerecordid><originalsourceid>FETCH-proquest_journals_30720597383</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwC8lIVYjRMIzR1M1LTSzKqVQoSy0qSa1QyMxLSS1IBRJ5yakKeaW5SalFCvlpCokK6UWJBRk8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvbGBuZGBqaW5sYUycKgBH5TRX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072059738</pqid></control><display><type>article</type><title>The \(1\)-nearly vertex independence number of a graph</title><source>Free E- Journals</source><creator>Shozi, Zekhaya B</creator><creatorcontrib>Shozi, Zekhaya B</creatorcontrib><description>Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\). A set \(I_0(G) \subseteq V(G)\) is a vertex independent set if no two vertices in \(I_0(G)\) are adjacent in \(G\). We study \(\alpha_1(G)\), which is the maximum cardinality of a set \(I_1(G) \subseteq V(G)\) that contains exactly one pair of adjacent vertices of \(G\). We call \(I_1(G)\) a \(1\)-nearly vertex independent set of \(G\) and \(\alpha_1(G)\) a \(1\)-nearly vertex independence number of \(G\). We provide some cases of explicit formulas for \(\alpha_1\). Furthermore, we prove a tight lower (resp. upper) bound on \(\alpha_1\) for graphs of order \(n\). The extremal graphs that achieve equality on each bound are fully characterised.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Graphs ; Vertex sets</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Shozi, Zekhaya B</creatorcontrib><title>The \(1\)-nearly vertex independence number of a graph</title><title>arXiv.org</title><description>Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\). A set \(I_0(G) \subseteq V(G)\) is a vertex independent set if no two vertices in \(I_0(G)\) are adjacent in \(G\). We study \(\alpha_1(G)\), which is the maximum cardinality of a set \(I_1(G) \subseteq V(G)\) that contains exactly one pair of adjacent vertices of \(G\). We call \(I_1(G)\) a \(1\)-nearly vertex independent set of \(G\) and \(\alpha_1(G)\) a \(1\)-nearly vertex independence number of \(G\). We provide some cases of explicit formulas for \(\alpha_1\). Furthermore, we prove a tight lower (resp. upper) bound on \(\alpha_1\) for graphs of order \(n\). The extremal graphs that achieve equality on each bound are fully characterised.</description><subject>Apexes</subject><subject>Graphs</subject><subject>Vertex sets</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwC8lIVYjRMIzR1M1LTSzKqVQoSy0qSa1QyMxLSS1IBRJ5yakKeaW5SalFCvlpCokK6UWJBRk8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvbGBuZGBqaW5sYUycKgBH5TRX</recordid><startdate>20240624</startdate><enddate>20240624</enddate><creator>Shozi, Zekhaya B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240624</creationdate><title>The \(1\)-nearly vertex independence number of a graph</title><author>Shozi, Zekhaya B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30720597383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Graphs</topic><topic>Vertex sets</topic><toplevel>online_resources</toplevel><creatorcontrib>Shozi, Zekhaya B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shozi, Zekhaya B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The \(1\)-nearly vertex independence number of a graph</atitle><jtitle>arXiv.org</jtitle><date>2024-06-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\). A set \(I_0(G) \subseteq V(G)\) is a vertex independent set if no two vertices in \(I_0(G)\) are adjacent in \(G\). We study \(\alpha_1(G)\), which is the maximum cardinality of a set \(I_1(G) \subseteq V(G)\) that contains exactly one pair of adjacent vertices of \(G\). We call \(I_1(G)\) a \(1\)-nearly vertex independent set of \(G\) and \(\alpha_1(G)\) a \(1\)-nearly vertex independence number of \(G\). We provide some cases of explicit formulas for \(\alpha_1\). Furthermore, we prove a tight lower (resp. upper) bound on \(\alpha_1\) for graphs of order \(n\). The extremal graphs that achieve equality on each bound are fully characterised.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3072059738 |
source | Free E- Journals |
subjects | Apexes Graphs Vertex sets |
title | The \(1\)-nearly vertex independence number of a graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20%5C(1%5C)-nearly%20vertex%20independence%20number%20of%20a%20graph&rft.jtitle=arXiv.org&rft.au=Shozi,%20Zekhaya%20B&rft.date=2024-06-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3072059738%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072059738&rft_id=info:pmid/&rfr_iscdi=true |