Confidence Regulation Neurons in Language Models

Despite their widespread use, the mechanisms by which large language models (LLMs) represent and regulate uncertainty in next-token predictions remain largely unexplored. This study investigates two critical components believed to influence this uncertainty: the recently discovered entropy neurons a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Stolfo, Alessandro, Wu, Ben, Gurnee, Wes, Belinkov, Yonatan, Song, Xingyi, Sachan, Mrinmaya, Nanda, Neel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Stolfo, Alessandro
Wu, Ben
Gurnee, Wes
Belinkov, Yonatan
Song, Xingyi
Sachan, Mrinmaya
Nanda, Neel
description Despite their widespread use, the mechanisms by which large language models (LLMs) represent and regulate uncertainty in next-token predictions remain largely unexplored. This study investigates two critical components believed to influence this uncertainty: the recently discovered entropy neurons and a new set of components that we term token frequency neurons. Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits. Our work shows that entropy neurons operate by writing onto an unembedding null space, allowing them to impact the residual stream norm with minimal direct effect on the logits themselves. We observe the presence of entropy neurons across a range of models, up to 7 billion parameters. On the other hand, token frequency neurons, which we discover and describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution. Finally, we present a detailed case study where entropy neurons actively manage confidence in the setting of induction, i.e. detecting and continuing repeated subsequences.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3072059081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072059081</sourcerecordid><originalsourceid>FETCH-proquest_journals_30720590813</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScC9fE2DoXxUEdxL0Eew0p4aK55v118AGc_uH7F6JQWtdVu1NqJUrmCQDUvlHG6EJAF2n0A9IT5R1dDnb2keQNc4rE0pO8WHLZOpTXOGDgjViONjCWv67F9nR8dOfqleI7I8_9FHOiL_UaGgXmAG2t_7s-XdYy7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072059081</pqid></control><display><type>article</type><title>Confidence Regulation Neurons in Language Models</title><source>Free E- Journals</source><creator>Stolfo, Alessandro ; Wu, Ben ; Gurnee, Wes ; Belinkov, Yonatan ; Song, Xingyi ; Sachan, Mrinmaya ; Nanda, Neel</creator><creatorcontrib>Stolfo, Alessandro ; Wu, Ben ; Gurnee, Wes ; Belinkov, Yonatan ; Song, Xingyi ; Sachan, Mrinmaya ; Nanda, Neel</creatorcontrib><description>Despite their widespread use, the mechanisms by which large language models (LLMs) represent and regulate uncertainty in next-token predictions remain largely unexplored. This study investigates two critical components believed to influence this uncertainty: the recently discovered entropy neurons and a new set of components that we term token frequency neurons. Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits. Our work shows that entropy neurons operate by writing onto an unembedding null space, allowing them to impact the residual stream norm with minimal direct effect on the logits themselves. We observe the presence of entropy neurons across a range of models, up to 7 billion parameters. On the other hand, token frequency neurons, which we discover and describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution. Finally, we present a detailed case study where entropy neurons actively manage confidence in the setting of induction, i.e. detecting and continuing repeated subsequences.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Critical components ; Entropy ; Large language models ; Neurons ; Uncertainty</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Stolfo, Alessandro</creatorcontrib><creatorcontrib>Wu, Ben</creatorcontrib><creatorcontrib>Gurnee, Wes</creatorcontrib><creatorcontrib>Belinkov, Yonatan</creatorcontrib><creatorcontrib>Song, Xingyi</creatorcontrib><creatorcontrib>Sachan, Mrinmaya</creatorcontrib><creatorcontrib>Nanda, Neel</creatorcontrib><title>Confidence Regulation Neurons in Language Models</title><title>arXiv.org</title><description>Despite their widespread use, the mechanisms by which large language models (LLMs) represent and regulate uncertainty in next-token predictions remain largely unexplored. This study investigates two critical components believed to influence this uncertainty: the recently discovered entropy neurons and a new set of components that we term token frequency neurons. Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits. Our work shows that entropy neurons operate by writing onto an unembedding null space, allowing them to impact the residual stream norm with minimal direct effect on the logits themselves. We observe the presence of entropy neurons across a range of models, up to 7 billion parameters. On the other hand, token frequency neurons, which we discover and describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution. Finally, we present a detailed case study where entropy neurons actively manage confidence in the setting of induction, i.e. detecting and continuing repeated subsequences.</description><subject>Critical components</subject><subject>Entropy</subject><subject>Large language models</subject><subject>Neurons</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScC9fE2DoXxUEdxL0Eew0p4aK55v118AGc_uH7F6JQWtdVu1NqJUrmCQDUvlHG6EJAF2n0A9IT5R1dDnb2keQNc4rE0pO8WHLZOpTXOGDgjViONjCWv67F9nR8dOfqleI7I8_9FHOiL_UaGgXmAG2t_7s-XdYy7A</recordid><startdate>20241108</startdate><enddate>20241108</enddate><creator>Stolfo, Alessandro</creator><creator>Wu, Ben</creator><creator>Gurnee, Wes</creator><creator>Belinkov, Yonatan</creator><creator>Song, Xingyi</creator><creator>Sachan, Mrinmaya</creator><creator>Nanda, Neel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241108</creationdate><title>Confidence Regulation Neurons in Language Models</title><author>Stolfo, Alessandro ; Wu, Ben ; Gurnee, Wes ; Belinkov, Yonatan ; Song, Xingyi ; Sachan, Mrinmaya ; Nanda, Neel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30720590813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Critical components</topic><topic>Entropy</topic><topic>Large language models</topic><topic>Neurons</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Stolfo, Alessandro</creatorcontrib><creatorcontrib>Wu, Ben</creatorcontrib><creatorcontrib>Gurnee, Wes</creatorcontrib><creatorcontrib>Belinkov, Yonatan</creatorcontrib><creatorcontrib>Song, Xingyi</creatorcontrib><creatorcontrib>Sachan, Mrinmaya</creatorcontrib><creatorcontrib>Nanda, Neel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stolfo, Alessandro</au><au>Wu, Ben</au><au>Gurnee, Wes</au><au>Belinkov, Yonatan</au><au>Song, Xingyi</au><au>Sachan, Mrinmaya</au><au>Nanda, Neel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Confidence Regulation Neurons in Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-11-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Despite their widespread use, the mechanisms by which large language models (LLMs) represent and regulate uncertainty in next-token predictions remain largely unexplored. This study investigates two critical components believed to influence this uncertainty: the recently discovered entropy neurons and a new set of components that we term token frequency neurons. Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits. Our work shows that entropy neurons operate by writing onto an unembedding null space, allowing them to impact the residual stream norm with minimal direct effect on the logits themselves. We observe the presence of entropy neurons across a range of models, up to 7 billion parameters. On the other hand, token frequency neurons, which we discover and describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution. Finally, we present a detailed case study where entropy neurons actively manage confidence in the setting of induction, i.e. detecting and continuing repeated subsequences.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3072059081
source Free E- Journals
subjects Critical components
Entropy
Large language models
Neurons
Uncertainty
title Confidence Regulation Neurons in Language Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Confidence%20Regulation%20Neurons%20in%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Stolfo,%20Alessandro&rft.date=2024-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3072059081%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072059081&rft_id=info:pmid/&rfr_iscdi=true