Distribution-Free Online Change Detection for Low-Rank Images
We present a distribution-free CUSUM procedure designed for online change detection in a time series of low-rank images, particularly when the change causes a mean shift. We represent images as matrix data and allow for temporal dependence, in addition to inherent spatial dependence, before and afte...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gong, Tingnan Seong-Hee, Kim Xie, Yao |
description | We present a distribution-free CUSUM procedure designed for online change detection in a time series of low-rank images, particularly when the change causes a mean shift. We represent images as matrix data and allow for temporal dependence, in addition to inherent spatial dependence, before and after the change. The marginal distributions are assumed to be general, not limited to any specific parametric distribution. We propose new monitoring statistics that utilize the low-rank structure of the in-control mean matrix. Additionally, we study the properties of the proposed detection procedure, assessing whether the monitoring statistics effectively capture a mean shift and evaluating the rate of increase in average run length relative to the control limit in both in-control and out-of-control cases. The effectiveness of our procedure is demonstrated through simulated and real data experiments. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3072055722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072055722</sourcerecordid><originalsourceid>FETCH-proquest_journals_30720557223</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdcksLinKTCotyczP03UrSk1V8M_LycxLVXDOSMxLT1VwSS1JTQZJKqTlFyn45JfrBiXmZSt45iampxbzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8sYG5kYGpqbmRkTFxqgA7-TdF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072055722</pqid></control><display><type>article</type><title>Distribution-Free Online Change Detection for Low-Rank Images</title><source>Free E- Journals</source><creator>Gong, Tingnan ; Seong-Hee, Kim ; Xie, Yao</creator><creatorcontrib>Gong, Tingnan ; Seong-Hee, Kim ; Xie, Yao</creatorcontrib><description>We present a distribution-free CUSUM procedure designed for online change detection in a time series of low-rank images, particularly when the change causes a mean shift. We represent images as matrix data and allow for temporal dependence, in addition to inherent spatial dependence, before and after the change. The marginal distributions are assumed to be general, not limited to any specific parametric distribution. We propose new monitoring statistics that utilize the low-rank structure of the in-control mean matrix. Additionally, we study the properties of the proposed detection procedure, assessing whether the monitoring statistics effectively capture a mean shift and evaluating the rate of increase in average run length relative to the control limit in both in-control and out-of-control cases. The effectiveness of our procedure is demonstrated through simulated and real data experiments.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Change detection ; Control limits ; Mean ; Monitoring</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gong, Tingnan</creatorcontrib><creatorcontrib>Seong-Hee, Kim</creatorcontrib><creatorcontrib>Xie, Yao</creatorcontrib><title>Distribution-Free Online Change Detection for Low-Rank Images</title><title>arXiv.org</title><description>We present a distribution-free CUSUM procedure designed for online change detection in a time series of low-rank images, particularly when the change causes a mean shift. We represent images as matrix data and allow for temporal dependence, in addition to inherent spatial dependence, before and after the change. The marginal distributions are assumed to be general, not limited to any specific parametric distribution. We propose new monitoring statistics that utilize the low-rank structure of the in-control mean matrix. Additionally, we study the properties of the proposed detection procedure, assessing whether the monitoring statistics effectively capture a mean shift and evaluating the rate of increase in average run length relative to the control limit in both in-control and out-of-control cases. The effectiveness of our procedure is demonstrated through simulated and real data experiments.</description><subject>Change detection</subject><subject>Control limits</subject><subject>Mean</subject><subject>Monitoring</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdcksLinKTCotyczP03UrSk1V8M_LycxLVXDOSMxLT1VwSS1JTQZJKqTlFyn45JfrBiXmZSt45iampxbzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8sYG5kYGpqbmRkTFxqgA7-TdF</recordid><startdate>20240623</startdate><enddate>20240623</enddate><creator>Gong, Tingnan</creator><creator>Seong-Hee, Kim</creator><creator>Xie, Yao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240623</creationdate><title>Distribution-Free Online Change Detection for Low-Rank Images</title><author>Gong, Tingnan ; Seong-Hee, Kim ; Xie, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30720557223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Change detection</topic><topic>Control limits</topic><topic>Mean</topic><topic>Monitoring</topic><toplevel>online_resources</toplevel><creatorcontrib>Gong, Tingnan</creatorcontrib><creatorcontrib>Seong-Hee, Kim</creatorcontrib><creatorcontrib>Xie, Yao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Tingnan</au><au>Seong-Hee, Kim</au><au>Xie, Yao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Distribution-Free Online Change Detection for Low-Rank Images</atitle><jtitle>arXiv.org</jtitle><date>2024-06-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present a distribution-free CUSUM procedure designed for online change detection in a time series of low-rank images, particularly when the change causes a mean shift. We represent images as matrix data and allow for temporal dependence, in addition to inherent spatial dependence, before and after the change. The marginal distributions are assumed to be general, not limited to any specific parametric distribution. We propose new monitoring statistics that utilize the low-rank structure of the in-control mean matrix. Additionally, we study the properties of the proposed detection procedure, assessing whether the monitoring statistics effectively capture a mean shift and evaluating the rate of increase in average run length relative to the control limit in both in-control and out-of-control cases. The effectiveness of our procedure is demonstrated through simulated and real data experiments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3072055722 |
source | Free E- Journals |
subjects | Change detection Control limits Mean Monitoring |
title | Distribution-Free Online Change Detection for Low-Rank Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Distribution-Free%20Online%20Change%20Detection%20for%20Low-Rank%20Images&rft.jtitle=arXiv.org&rft.au=Gong,%20Tingnan&rft.date=2024-06-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3072055722%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072055722&rft_id=info:pmid/&rfr_iscdi=true |