TacoLM: GaTed Attention Equipped Codec Language Model are Efficient Zero-Shot Text to Speech Synthesizers

Neural codec language model (LM) has demonstrated strong capability in zero-shot text-to-speech (TTS) synthesis. However, the codec LM often suffers from limitations in inference speed and stability, due to its auto-regressive nature and implicit alignment between text and audio. In this work, to ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Song, Yakun, Chen, Zhuo, Wang, Xiaofei, Ma, Ziyang, Yang, Guanrou, Xie, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Song, Yakun
Chen, Zhuo
Wang, Xiaofei
Ma, Ziyang
Yang, Guanrou
Xie, Chen
description Neural codec language model (LM) has demonstrated strong capability in zero-shot text-to-speech (TTS) synthesis. However, the codec LM often suffers from limitations in inference speed and stability, due to its auto-regressive nature and implicit alignment between text and audio. In this work, to handle these challenges, we introduce a new variant of neural codec LM, namely TacoLM. Specifically, TacoLM introduces a gated attention mechanism to improve the training and inference efficiency and reduce the model size. Meanwhile, an additional gated cross-attention layer is included for each decoder layer, which improves the efficiency and content accuracy of the synthesized speech. In the evaluation of the Librispeech corpus, the proposed TacoLM achieves a better word error rate, speaker similarity, and mean opinion score, with 90% fewer parameters and 5.2 times speed up, compared with VALL-E. Demo and code is available at https://ereboas.github.io/TacoLM/.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3072055494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072055494</sourcerecordid><originalsourceid>FETCH-proquest_journals_30720554943</originalsourceid><addsrcrecordid>eNqNirsKwjAYRoMgKNp3-MG5EJPW2yZSddCpmVxKqH_bFElqLqA-vRl8AKfDd74zIlPG-TLdZIxNSOJcTyllqzXLcz4lSsjaXK47OEmBd9h7j9oro6F4BjUMUR3MHWu4SN0G2SJc43yAtAhF06haxRxuaE1adsaDwJcHb6AcEOsOyrf2HTr1QevmZNzIh8PkxxlZHAtxOKeDNc-Azle9CVbHq-J0zWieZ9uM_1d9AdFVRww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072055494</pqid></control><display><type>article</type><title>TacoLM: GaTed Attention Equipped Codec Language Model are Efficient Zero-Shot Text to Speech Synthesizers</title><source>Free E- Journals</source><creator>Song, Yakun ; Chen, Zhuo ; Wang, Xiaofei ; Ma, Ziyang ; Yang, Guanrou ; Xie, Chen</creator><creatorcontrib>Song, Yakun ; Chen, Zhuo ; Wang, Xiaofei ; Ma, Ziyang ; Yang, Guanrou ; Xie, Chen</creatorcontrib><description>Neural codec language model (LM) has demonstrated strong capability in zero-shot text-to-speech (TTS) synthesis. However, the codec LM often suffers from limitations in inference speed and stability, due to its auto-regressive nature and implicit alignment between text and audio. In this work, to handle these challenges, we introduce a new variant of neural codec LM, namely TacoLM. Specifically, TacoLM introduces a gated attention mechanism to improve the training and inference efficiency and reduce the model size. Meanwhile, an additional gated cross-attention layer is included for each decoder layer, which improves the efficiency and content accuracy of the synthesized speech. In the evaluation of the Librispeech corpus, the proposed TacoLM achieves a better word error rate, speaker similarity, and mean opinion score, with 90% fewer parameters and 5.2 times speed up, compared with VALL-E. Demo and code is available at https://ereboas.github.io/TacoLM/.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Codec ; Inference ; Speech recognition ; Synthesis ; Synthesizers</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Song, Yakun</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Ma, Ziyang</creatorcontrib><creatorcontrib>Yang, Guanrou</creatorcontrib><creatorcontrib>Xie, Chen</creatorcontrib><title>TacoLM: GaTed Attention Equipped Codec Language Model are Efficient Zero-Shot Text to Speech Synthesizers</title><title>arXiv.org</title><description>Neural codec language model (LM) has demonstrated strong capability in zero-shot text-to-speech (TTS) synthesis. However, the codec LM often suffers from limitations in inference speed and stability, due to its auto-regressive nature and implicit alignment between text and audio. In this work, to handle these challenges, we introduce a new variant of neural codec LM, namely TacoLM. Specifically, TacoLM introduces a gated attention mechanism to improve the training and inference efficiency and reduce the model size. Meanwhile, an additional gated cross-attention layer is included for each decoder layer, which improves the efficiency and content accuracy of the synthesized speech. In the evaluation of the Librispeech corpus, the proposed TacoLM achieves a better word error rate, speaker similarity, and mean opinion score, with 90% fewer parameters and 5.2 times speed up, compared with VALL-E. Demo and code is available at https://ereboas.github.io/TacoLM/.</description><subject>Codec</subject><subject>Inference</subject><subject>Speech recognition</subject><subject>Synthesis</subject><subject>Synthesizers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirsKwjAYRoMgKNp3-MG5EJPW2yZSddCpmVxKqH_bFElqLqA-vRl8AKfDd74zIlPG-TLdZIxNSOJcTyllqzXLcz4lSsjaXK47OEmBd9h7j9oro6F4BjUMUR3MHWu4SN0G2SJc43yAtAhF06haxRxuaE1adsaDwJcHb6AcEOsOyrf2HTr1QevmZNzIh8PkxxlZHAtxOKeDNc-Azle9CVbHq-J0zWieZ9uM_1d9AdFVRww</recordid><startdate>20240622</startdate><enddate>20240622</enddate><creator>Song, Yakun</creator><creator>Chen, Zhuo</creator><creator>Wang, Xiaofei</creator><creator>Ma, Ziyang</creator><creator>Yang, Guanrou</creator><creator>Xie, Chen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240622</creationdate><title>TacoLM: GaTed Attention Equipped Codec Language Model are Efficient Zero-Shot Text to Speech Synthesizers</title><author>Song, Yakun ; Chen, Zhuo ; Wang, Xiaofei ; Ma, Ziyang ; Yang, Guanrou ; Xie, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30720554943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codec</topic><topic>Inference</topic><topic>Speech recognition</topic><topic>Synthesis</topic><topic>Synthesizers</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, Yakun</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Ma, Ziyang</creatorcontrib><creatorcontrib>Yang, Guanrou</creatorcontrib><creatorcontrib>Xie, Chen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yakun</au><au>Chen, Zhuo</au><au>Wang, Xiaofei</au><au>Ma, Ziyang</au><au>Yang, Guanrou</au><au>Xie, Chen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TacoLM: GaTed Attention Equipped Codec Language Model are Efficient Zero-Shot Text to Speech Synthesizers</atitle><jtitle>arXiv.org</jtitle><date>2024-06-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Neural codec language model (LM) has demonstrated strong capability in zero-shot text-to-speech (TTS) synthesis. However, the codec LM often suffers from limitations in inference speed and stability, due to its auto-regressive nature and implicit alignment between text and audio. In this work, to handle these challenges, we introduce a new variant of neural codec LM, namely TacoLM. Specifically, TacoLM introduces a gated attention mechanism to improve the training and inference efficiency and reduce the model size. Meanwhile, an additional gated cross-attention layer is included for each decoder layer, which improves the efficiency and content accuracy of the synthesized speech. In the evaluation of the Librispeech corpus, the proposed TacoLM achieves a better word error rate, speaker similarity, and mean opinion score, with 90% fewer parameters and 5.2 times speed up, compared with VALL-E. Demo and code is available at https://ereboas.github.io/TacoLM/.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3072055494
source Free E- Journals
subjects Codec
Inference
Speech recognition
Synthesis
Synthesizers
title TacoLM: GaTed Attention Equipped Codec Language Model are Efficient Zero-Shot Text to Speech Synthesizers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TacoLM:%20GaTed%20Attention%20Equipped%20Codec%20Language%20Model%20are%20Efficient%20Zero-Shot%20Text%20to%20Speech%20Synthesizers&rft.jtitle=arXiv.org&rft.au=Song,%20Yakun&rft.date=2024-06-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3072055494%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072055494&rft_id=info:pmid/&rfr_iscdi=true