Neural Moving Horizon Estimation: A Systematic Literature Review

The neural moving horizon estimator (NMHE) is a relatively new and powerful state estimator that combines the strengths of neural networks (NNs) and model-based state estimation techniques. Various approaches exist for constructing NMHEs, each with its unique advantages and limitations. However, a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Surrayya Mobeen, Jann Cristobal, Singoji, Shashank, Rassas, Basaam, Izadi, Mohammadreza, Shayan, Zeinab, Amin Yazdanshenas, Kaur, Harneet, Barnsley, Robert, Elliott, Lana, Faieghi, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Surrayya Mobeen
Jann Cristobal
Singoji, Shashank
Rassas, Basaam
Izadi, Mohammadreza
Shayan, Zeinab
Amin Yazdanshenas
Kaur, Harneet
Barnsley, Robert
Elliott, Lana
Faieghi, Reza
description The neural moving horizon estimator (NMHE) is a relatively new and powerful state estimator that combines the strengths of neural networks (NNs) and model-based state estimation techniques. Various approaches exist for constructing NMHEs, each with its unique advantages and limitations. However, a comprehensive literature review that consolidates existing knowledge, outlines design guidelines and highlights future research directions is currently lacking. This systematic literature review synthesizes the existing knowledge on NMHE, addressing the above knowledge gap. The paper (1) explains the fundamental principles of NMHE, (2) explores different NMHE architectures, discussing the pros and cons of each, (3) investigates the NN architectures used in NMHE, providing insights for future designs, (4) examines the real-time implementability of current approaches, offering recommendations for practical applications, and (5) discusses the current limitations of NMHE approaches and outlines directions for future research. These insights can significantly improve the design and application of NMHE, which is critical for enhancing state estimation in complex systems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3072053652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072053652</sourcerecordid><originalsourceid>FETCH-proquest_journals_30720536523</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6EF9MK64UqXShLtR9CfKUlJpoPhU9vQoewNUwzPRYgkJMstkUccBS7xvOOeYFSikStthRdKqFre20uUBlnX5ZA6UP-qqCtmYOSzg8faCvnmCjAzkVoiPYU6fpMWL9s2o9pT8O2XhdHldVdnP2HsmHurHRmU-qBS-QS5FLFP9dbzAJOPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072053652</pqid></control><display><type>article</type><title>Neural Moving Horizon Estimation: A Systematic Literature Review</title><source>Free E- Journals</source><creator>Surrayya Mobeen ; Jann Cristobal ; Singoji, Shashank ; Rassas, Basaam ; Izadi, Mohammadreza ; Shayan, Zeinab ; Amin Yazdanshenas ; Kaur, Harneet ; Barnsley, Robert ; Elliott, Lana ; Faieghi, Reza</creator><creatorcontrib>Surrayya Mobeen ; Jann Cristobal ; Singoji, Shashank ; Rassas, Basaam ; Izadi, Mohammadreza ; Shayan, Zeinab ; Amin Yazdanshenas ; Kaur, Harneet ; Barnsley, Robert ; Elliott, Lana ; Faieghi, Reza</creatorcontrib><description>The neural moving horizon estimator (NMHE) is a relatively new and powerful state estimator that combines the strengths of neural networks (NNs) and model-based state estimation techniques. Various approaches exist for constructing NMHEs, each with its unique advantages and limitations. However, a comprehensive literature review that consolidates existing knowledge, outlines design guidelines and highlights future research directions is currently lacking. This systematic literature review synthesizes the existing knowledge on NMHE, addressing the above knowledge gap. The paper (1) explains the fundamental principles of NMHE, (2) explores different NMHE architectures, discussing the pros and cons of each, (3) investigates the NN architectures used in NMHE, providing insights for future designs, (4) examines the real-time implementability of current approaches, offering recommendations for practical applications, and (5) discusses the current limitations of NMHE approaches and outlines directions for future research. These insights can significantly improve the design and application of NMHE, which is critical for enhancing state estimation in complex systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Complex systems ; Design improvements ; Literature reviews ; Neural networks ; Real time ; State estimation ; Systematic review</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Surrayya Mobeen</creatorcontrib><creatorcontrib>Jann Cristobal</creatorcontrib><creatorcontrib>Singoji, Shashank</creatorcontrib><creatorcontrib>Rassas, Basaam</creatorcontrib><creatorcontrib>Izadi, Mohammadreza</creatorcontrib><creatorcontrib>Shayan, Zeinab</creatorcontrib><creatorcontrib>Amin Yazdanshenas</creatorcontrib><creatorcontrib>Kaur, Harneet</creatorcontrib><creatorcontrib>Barnsley, Robert</creatorcontrib><creatorcontrib>Elliott, Lana</creatorcontrib><creatorcontrib>Faieghi, Reza</creatorcontrib><title>Neural Moving Horizon Estimation: A Systematic Literature Review</title><title>arXiv.org</title><description>The neural moving horizon estimator (NMHE) is a relatively new and powerful state estimator that combines the strengths of neural networks (NNs) and model-based state estimation techniques. Various approaches exist for constructing NMHEs, each with its unique advantages and limitations. However, a comprehensive literature review that consolidates existing knowledge, outlines design guidelines and highlights future research directions is currently lacking. This systematic literature review synthesizes the existing knowledge on NMHE, addressing the above knowledge gap. The paper (1) explains the fundamental principles of NMHE, (2) explores different NMHE architectures, discussing the pros and cons of each, (3) investigates the NN architectures used in NMHE, providing insights for future designs, (4) examines the real-time implementability of current approaches, offering recommendations for practical applications, and (5) discusses the current limitations of NMHE approaches and outlines directions for future research. These insights can significantly improve the design and application of NMHE, which is critical for enhancing state estimation in complex systems.</description><subject>Complex systems</subject><subject>Design improvements</subject><subject>Literature reviews</subject><subject>Neural networks</subject><subject>Real time</subject><subject>State estimation</subject><subject>Systematic review</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6EF9MK64UqXShLtR9CfKUlJpoPhU9vQoewNUwzPRYgkJMstkUccBS7xvOOeYFSikStthRdKqFre20uUBlnX5ZA6UP-qqCtmYOSzg8faCvnmCjAzkVoiPYU6fpMWL9s2o9pT8O2XhdHldVdnP2HsmHurHRmU-qBS-QS5FLFP9dbzAJOPg</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>Surrayya Mobeen</creator><creator>Jann Cristobal</creator><creator>Singoji, Shashank</creator><creator>Rassas, Basaam</creator><creator>Izadi, Mohammadreza</creator><creator>Shayan, Zeinab</creator><creator>Amin Yazdanshenas</creator><creator>Kaur, Harneet</creator><creator>Barnsley, Robert</creator><creator>Elliott, Lana</creator><creator>Faieghi, Reza</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240621</creationdate><title>Neural Moving Horizon Estimation: A Systematic Literature Review</title><author>Surrayya Mobeen ; Jann Cristobal ; Singoji, Shashank ; Rassas, Basaam ; Izadi, Mohammadreza ; Shayan, Zeinab ; Amin Yazdanshenas ; Kaur, Harneet ; Barnsley, Robert ; Elliott, Lana ; Faieghi, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30720536523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complex systems</topic><topic>Design improvements</topic><topic>Literature reviews</topic><topic>Neural networks</topic><topic>Real time</topic><topic>State estimation</topic><topic>Systematic review</topic><toplevel>online_resources</toplevel><creatorcontrib>Surrayya Mobeen</creatorcontrib><creatorcontrib>Jann Cristobal</creatorcontrib><creatorcontrib>Singoji, Shashank</creatorcontrib><creatorcontrib>Rassas, Basaam</creatorcontrib><creatorcontrib>Izadi, Mohammadreza</creatorcontrib><creatorcontrib>Shayan, Zeinab</creatorcontrib><creatorcontrib>Amin Yazdanshenas</creatorcontrib><creatorcontrib>Kaur, Harneet</creatorcontrib><creatorcontrib>Barnsley, Robert</creatorcontrib><creatorcontrib>Elliott, Lana</creatorcontrib><creatorcontrib>Faieghi, Reza</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surrayya Mobeen</au><au>Jann Cristobal</au><au>Singoji, Shashank</au><au>Rassas, Basaam</au><au>Izadi, Mohammadreza</au><au>Shayan, Zeinab</au><au>Amin Yazdanshenas</au><au>Kaur, Harneet</au><au>Barnsley, Robert</au><au>Elliott, Lana</au><au>Faieghi, Reza</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Neural Moving Horizon Estimation: A Systematic Literature Review</atitle><jtitle>arXiv.org</jtitle><date>2024-06-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The neural moving horizon estimator (NMHE) is a relatively new and powerful state estimator that combines the strengths of neural networks (NNs) and model-based state estimation techniques. Various approaches exist for constructing NMHEs, each with its unique advantages and limitations. However, a comprehensive literature review that consolidates existing knowledge, outlines design guidelines and highlights future research directions is currently lacking. This systematic literature review synthesizes the existing knowledge on NMHE, addressing the above knowledge gap. The paper (1) explains the fundamental principles of NMHE, (2) explores different NMHE architectures, discussing the pros and cons of each, (3) investigates the NN architectures used in NMHE, providing insights for future designs, (4) examines the real-time implementability of current approaches, offering recommendations for practical applications, and (5) discusses the current limitations of NMHE approaches and outlines directions for future research. These insights can significantly improve the design and application of NMHE, which is critical for enhancing state estimation in complex systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3072053652
source Free E- Journals
subjects Complex systems
Design improvements
Literature reviews
Neural networks
Real time
State estimation
Systematic review
title Neural Moving Horizon Estimation: A Systematic Literature Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Neural%20Moving%20Horizon%20Estimation:%20A%20Systematic%20Literature%20Review&rft.jtitle=arXiv.org&rft.au=Surrayya%20Mobeen&rft.date=2024-06-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3072053652%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072053652&rft_id=info:pmid/&rfr_iscdi=true