A semantic vector map-based approach for aircraft positioning in GNSS/GPS denied large-scale environment

Accurate positioning is one of the essential requirements for numerous applications of remote sensing data, especially in the event of a noisy or unreliable satellite signal. Toward this end, we present a novel framework for aircraft geo-localization in a large range that only requires a downward-fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Defence technology 2024-04, Vol.34, p.1-10
Hauptverfasser: Ouyang, Chenguang, Hu, Suxing, Long, Fengqi, Shi, Shuai, Yu, Zhichao, Zhao, Kaichun, You, Zheng, Pi, Junyin, Xing, Bowen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Defence technology
container_volume 34
creator Ouyang, Chenguang
Hu, Suxing
Long, Fengqi
Shi, Shuai
Yu, Zhichao
Zhao, Kaichun
You, Zheng
Pi, Junyin
Xing, Bowen
description Accurate positioning is one of the essential requirements for numerous applications of remote sensing data, especially in the event of a noisy or unreliable satellite signal. Toward this end, we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera, an altimeter, a compass, and an open-source Vector Map (VMAP). The algorithm combines the matching and particle filter methods. Shape vector and correlation between two building contour vectors are defined, and a coarse-to-fine building vector matching (CFBVM) method is proposed in the matching stage, for which the original matching results are described by the Gaussian mixture model (GMM). Subsequently, an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles, and a credibility indicator is designed to avoid location mistakes in the particle filter stage. An experimental evaluation of the approach based on flight data is provided. On a flight at a height of 0.2 km over a flight distance of 2 km, the aircraft is geo-localized in a reference map of 11,025 km2 using 0.09 km2 aerial images without any prior information. The absolute localization error is less than 10 m.
doi_str_mv 10.1016/j.dt.2023.07.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3072015989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214914723001903</els_id><sourcerecordid>3072015989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-577a9baeeea2cb0b2c3e06e3e42cff787ba0d5dca9c40ca6cf2dbd40c548a3e83</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhRdRULR3jwHPu06yu82uNylaBVGheg6zyWyb0mbXJC34702pBy-e5vF438zwsuyaQ8GBT2_XhYmFAFEWIAuA6Ul2IQSv8pZX8vSPPs8mIawBgDfJq-VFtrpngbbootVsTzoOnm1xzDsMZBiOox9Qr1ifbLRee-wjG4dgox2cdUtmHZu_Lha38_cFM-Rsgjbol5QHjRti5PbWD25LLl5lZz1uAk1-52X2-fjwMXvKX97mz7P7l1yXXMa8lhLbDokIhe6gE7okmFJJldB9LxvZIZjaaGx1BRqnuhemM0nWVYMlNeVldnPcm17_2lGIaj3svEsnVQlSAK_bpk0pOKa0H0Lw1KvR2y36b8VBHSpVa2WiOlSqQKpUaULujgil7_eWvAraktNkrE_FKTPY_-EfU2R_Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072015989</pqid></control><display><type>article</type><title>A semantic vector map-based approach for aircraft positioning in GNSS/GPS denied large-scale environment</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Ouyang, Chenguang ; Hu, Suxing ; Long, Fengqi ; Shi, Shuai ; Yu, Zhichao ; Zhao, Kaichun ; You, Zheng ; Pi, Junyin ; Xing, Bowen</creator><creatorcontrib>Ouyang, Chenguang ; Hu, Suxing ; Long, Fengqi ; Shi, Shuai ; Yu, Zhichao ; Zhao, Kaichun ; You, Zheng ; Pi, Junyin ; Xing, Bowen</creatorcontrib><description>Accurate positioning is one of the essential requirements for numerous applications of remote sensing data, especially in the event of a noisy or unreliable satellite signal. Toward this end, we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera, an altimeter, a compass, and an open-source Vector Map (VMAP). The algorithm combines the matching and particle filter methods. Shape vector and correlation between two building contour vectors are defined, and a coarse-to-fine building vector matching (CFBVM) method is proposed in the matching stage, for which the original matching results are described by the Gaussian mixture model (GMM). Subsequently, an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles, and a credibility indicator is designed to avoid location mistakes in the particle filter stage. An experimental evaluation of the approach based on flight data is provided. On a flight at a height of 0.2 km over a flight distance of 2 km, the aircraft is geo-localized in a reference map of 11,025 km2 using 0.09 km2 aerial images without any prior information. The absolute localization error is less than 10 m.</description><identifier>ISSN: 2214-9147</identifier><identifier>ISSN: 2096-3459</identifier><identifier>EISSN: 2214-9147</identifier><identifier>DOI: 10.1016/j.dt.2023.07.006</identifier><language>eng</language><publisher>Beijing: Elsevier B.V</publisher><subject>Accuracy ; Aircraft ; Algorithms ; Building vector matching ; Buildings ; Cameras ; Contour matching ; Design ; Flight ; Global positioning systems ; GPS ; GPS-Denied ; Improved particle filter ; Large-scale positioning ; Localization ; Methods ; Navigation systems ; Neural networks ; Probabilistic models ; Registration ; Remote sensing ; Resampling ; Satellite navigation systems ; Semantics ; Vector map</subject><ispartof>Defence technology, 2024-04, Vol.34, p.1-10</ispartof><rights>2023 China Ordnance Society</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-577a9baeeea2cb0b2c3e06e3e42cff787ba0d5dca9c40ca6cf2dbd40c548a3e83</cites><orcidid>0000-0002-9241-5304 ; 0000-0002-4718-6872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3072015989?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Ouyang, Chenguang</creatorcontrib><creatorcontrib>Hu, Suxing</creatorcontrib><creatorcontrib>Long, Fengqi</creatorcontrib><creatorcontrib>Shi, Shuai</creatorcontrib><creatorcontrib>Yu, Zhichao</creatorcontrib><creatorcontrib>Zhao, Kaichun</creatorcontrib><creatorcontrib>You, Zheng</creatorcontrib><creatorcontrib>Pi, Junyin</creatorcontrib><creatorcontrib>Xing, Bowen</creatorcontrib><title>A semantic vector map-based approach for aircraft positioning in GNSS/GPS denied large-scale environment</title><title>Defence technology</title><description>Accurate positioning is one of the essential requirements for numerous applications of remote sensing data, especially in the event of a noisy or unreliable satellite signal. Toward this end, we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera, an altimeter, a compass, and an open-source Vector Map (VMAP). The algorithm combines the matching and particle filter methods. Shape vector and correlation between two building contour vectors are defined, and a coarse-to-fine building vector matching (CFBVM) method is proposed in the matching stage, for which the original matching results are described by the Gaussian mixture model (GMM). Subsequently, an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles, and a credibility indicator is designed to avoid location mistakes in the particle filter stage. An experimental evaluation of the approach based on flight data is provided. On a flight at a height of 0.2 km over a flight distance of 2 km, the aircraft is geo-localized in a reference map of 11,025 km2 using 0.09 km2 aerial images without any prior information. The absolute localization error is less than 10 m.</description><subject>Accuracy</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Building vector matching</subject><subject>Buildings</subject><subject>Cameras</subject><subject>Contour matching</subject><subject>Design</subject><subject>Flight</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>GPS-Denied</subject><subject>Improved particle filter</subject><subject>Large-scale positioning</subject><subject>Localization</subject><subject>Methods</subject><subject>Navigation systems</subject><subject>Neural networks</subject><subject>Probabilistic models</subject><subject>Registration</subject><subject>Remote sensing</subject><subject>Resampling</subject><subject>Satellite navigation systems</subject><subject>Semantics</subject><subject>Vector map</subject><issn>2214-9147</issn><issn>2096-3459</issn><issn>2214-9147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFLAzEQhRdRULR3jwHPu06yu82uNylaBVGheg6zyWyb0mbXJC34702pBy-e5vF438zwsuyaQ8GBT2_XhYmFAFEWIAuA6Ul2IQSv8pZX8vSPPs8mIawBgDfJq-VFtrpngbbootVsTzoOnm1xzDsMZBiOox9Qr1ifbLRee-wjG4dgox2cdUtmHZu_Lha38_cFM-Rsgjbol5QHjRti5PbWD25LLl5lZz1uAk1-52X2-fjwMXvKX97mz7P7l1yXXMa8lhLbDokIhe6gE7okmFJJldB9LxvZIZjaaGx1BRqnuhemM0nWVYMlNeVldnPcm17_2lGIaj3svEsnVQlSAK_bpk0pOKa0H0Lw1KvR2y36b8VBHSpVa2WiOlSqQKpUaULujgil7_eWvAraktNkrE_FKTPY_-EfU2R_Uw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Ouyang, Chenguang</creator><creator>Hu, Suxing</creator><creator>Long, Fengqi</creator><creator>Shi, Shuai</creator><creator>Yu, Zhichao</creator><creator>Zhao, Kaichun</creator><creator>You, Zheng</creator><creator>Pi, Junyin</creator><creator>Xing, Bowen</creator><general>Elsevier B.V</general><general>KeAi Publishing Communications Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88F</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M1Q</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9241-5304</orcidid><orcidid>https://orcid.org/0000-0002-4718-6872</orcidid></search><sort><creationdate>20240401</creationdate><title>A semantic vector map-based approach for aircraft positioning in GNSS/GPS denied large-scale environment</title><author>Ouyang, Chenguang ; Hu, Suxing ; Long, Fengqi ; Shi, Shuai ; Yu, Zhichao ; Zhao, Kaichun ; You, Zheng ; Pi, Junyin ; Xing, Bowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-577a9baeeea2cb0b2c3e06e3e42cff787ba0d5dca9c40ca6cf2dbd40c548a3e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Building vector matching</topic><topic>Buildings</topic><topic>Cameras</topic><topic>Contour matching</topic><topic>Design</topic><topic>Flight</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>GPS-Denied</topic><topic>Improved particle filter</topic><topic>Large-scale positioning</topic><topic>Localization</topic><topic>Methods</topic><topic>Navigation systems</topic><topic>Neural networks</topic><topic>Probabilistic models</topic><topic>Registration</topic><topic>Remote sensing</topic><topic>Resampling</topic><topic>Satellite navigation systems</topic><topic>Semantics</topic><topic>Vector map</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouyang, Chenguang</creatorcontrib><creatorcontrib>Hu, Suxing</creatorcontrib><creatorcontrib>Long, Fengqi</creatorcontrib><creatorcontrib>Shi, Shuai</creatorcontrib><creatorcontrib>Yu, Zhichao</creatorcontrib><creatorcontrib>Zhao, Kaichun</creatorcontrib><creatorcontrib>You, Zheng</creatorcontrib><creatorcontrib>Pi, Junyin</creatorcontrib><creatorcontrib>Xing, Bowen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Military Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Defence technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouyang, Chenguang</au><au>Hu, Suxing</au><au>Long, Fengqi</au><au>Shi, Shuai</au><au>Yu, Zhichao</au><au>Zhao, Kaichun</au><au>You, Zheng</au><au>Pi, Junyin</au><au>Xing, Bowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semantic vector map-based approach for aircraft positioning in GNSS/GPS denied large-scale environment</atitle><jtitle>Defence technology</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>34</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2214-9147</issn><issn>2096-3459</issn><eissn>2214-9147</eissn><abstract>Accurate positioning is one of the essential requirements for numerous applications of remote sensing data, especially in the event of a noisy or unreliable satellite signal. Toward this end, we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera, an altimeter, a compass, and an open-source Vector Map (VMAP). The algorithm combines the matching and particle filter methods. Shape vector and correlation between two building contour vectors are defined, and a coarse-to-fine building vector matching (CFBVM) method is proposed in the matching stage, for which the original matching results are described by the Gaussian mixture model (GMM). Subsequently, an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles, and a credibility indicator is designed to avoid location mistakes in the particle filter stage. An experimental evaluation of the approach based on flight data is provided. On a flight at a height of 0.2 km over a flight distance of 2 km, the aircraft is geo-localized in a reference map of 11,025 km2 using 0.09 km2 aerial images without any prior information. The absolute localization error is less than 10 m.</abstract><cop>Beijing</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dt.2023.07.006</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9241-5304</orcidid><orcidid>https://orcid.org/0000-0002-4718-6872</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-9147
ispartof Defence technology, 2024-04, Vol.34, p.1-10
issn 2214-9147
2096-3459
2214-9147
language eng
recordid cdi_proquest_journals_3072015989
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; ProQuest Central
subjects Accuracy
Aircraft
Algorithms
Building vector matching
Buildings
Cameras
Contour matching
Design
Flight
Global positioning systems
GPS
GPS-Denied
Improved particle filter
Large-scale positioning
Localization
Methods
Navigation systems
Neural networks
Probabilistic models
Registration
Remote sensing
Resampling
Satellite navigation systems
Semantics
Vector map
title A semantic vector map-based approach for aircraft positioning in GNSS/GPS denied large-scale environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semantic%20vector%20map-based%20approach%20for%20aircraft%20positioning%20in%20GNSS/GPS%20denied%20large-scale%20environment&rft.jtitle=Defence%20technology&rft.au=Ouyang,%20Chenguang&rft.date=2024-04-01&rft.volume=34&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2214-9147&rft.eissn=2214-9147&rft_id=info:doi/10.1016/j.dt.2023.07.006&rft_dat=%3Cproquest_cross%3E3072015989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072015989&rft_id=info:pmid/&rft_els_id=S2214914723001903&rfr_iscdi=true