Smart Pixels: In-pixel AI for on-sensor data filtering

We present a smart pixel prototype readout integrated circuit (ROIC) designed in CMOS 28 nm bulk process, with in-pixel implementation of an artificial intelligence (AI) / machine learning (ML) based data filtering algorithm designed as proof-of-principle for a Phase III upgrade at the Large Hadron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Parpillon, Benjamin, Syal, Chinar, Yoo, Jieun, Dickinson, Jennet, Swartz, Morris, Giuseppe Di Guglielmo, Bean, Alice, Berry, Douglas, Manuel Blanco Valentin, DiPetrillo, Karri, Badea, Anthony, Gray, Lindsey, Maksimovic, Petar, Mills, Corrinne, Neubauer, Mark S, Pradhan, Gauri, Tran, Nhan, Wen, Dahai, Fahim, Farah, the CMS Collaboration
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Parpillon, Benjamin
Syal, Chinar
Yoo, Jieun
Dickinson, Jennet
Swartz, Morris
Giuseppe Di Guglielmo
Bean, Alice
Berry, Douglas
Manuel Blanco Valentin
DiPetrillo, Karri
Badea, Anthony
Gray, Lindsey
Maksimovic, Petar
Mills, Corrinne
Neubauer, Mark S
Pradhan, Gauri
Tran, Nhan
Wen, Dahai
Fahim, Farah
the CMS Collaboration
description We present a smart pixel prototype readout integrated circuit (ROIC) designed in CMOS 28 nm bulk process, with in-pixel implementation of an artificial intelligence (AI) / machine learning (ML) based data filtering algorithm designed as proof-of-principle for a Phase III upgrade at the Large Hadron Collider (LHC) pixel detector. The first version of the ROIC consists of two matrices of 256 smart pixels, each 25\(\times\)25 \(\mu\)m\(^2\) in size. Each pixel consists of a charge-sensitive preamplifier with leakage current compensation and three auto-zero comparators for a 2-bit flash-type ADC. The frontend is capable of synchronously digitizing the sensor charge within 25 ns. Measurement results show an equivalent noise charge (ENC) of \(\sim\)30e\(^-\) and a total dispersion of \(\sim\)100e\(^-\) The second version of the ROIC uses a fully connected two-layer neural network (NN) to process information from a cluster of 256 pixels to determine if the pattern corresponds to highly desirable high-momentum particle tracks for selection and readout. The digital NN is embedded in-between analog signal processing regions of the 256 pixels without increasing the pixel size and is implemented as fully combinatorial digital logic to minimize power consumption and eliminate clock distribution, and is active only in the presence of an input signal. The total power consumption of the neural network is \(\sim\) 300 \(\mu\)W. The NN performs momentum classification based on the generated cluster patterns and even with a modest momentum threshold, it is capable of 54.4\% - 75.4\% total data rejection, opening the possibility of using the pixel information at 40MHz for the trigger. The total power consumption of analog and digital functions per pixel is \(\sim\) 6 \(\mu\)W per pixel, which corresponds to \(\sim\) 1 W/cm\(^2\) staying within the experimental constraints.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3071630215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071630215</sourcerecordid><originalsourceid>FETCH-proquest_journals_30716302153</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwC85NLCpRCMisSM0ptlLwzNMtADEVHD0V0vKLFPLzdItT84qBrJTEkkSFtMycktSizLx0HgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzYwNzQzNjAyNDUmThUAWwg0Yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071630215</pqid></control><display><type>article</type><title>Smart Pixels: In-pixel AI for on-sensor data filtering</title><source>Free E- Journals</source><creator>Parpillon, Benjamin ; Syal, Chinar ; Yoo, Jieun ; Dickinson, Jennet ; Swartz, Morris ; Giuseppe Di Guglielmo ; Bean, Alice ; Berry, Douglas ; Manuel Blanco Valentin ; DiPetrillo, Karri ; Badea, Anthony ; Gray, Lindsey ; Maksimovic, Petar ; Mills, Corrinne ; Neubauer, Mark S ; Pradhan, Gauri ; Tran, Nhan ; Wen, Dahai ; Fahim, Farah ; the CMS Collaboration</creator><creatorcontrib>Parpillon, Benjamin ; Syal, Chinar ; Yoo, Jieun ; Dickinson, Jennet ; Swartz, Morris ; Giuseppe Di Guglielmo ; Bean, Alice ; Berry, Douglas ; Manuel Blanco Valentin ; DiPetrillo, Karri ; Badea, Anthony ; Gray, Lindsey ; Maksimovic, Petar ; Mills, Corrinne ; Neubauer, Mark S ; Pradhan, Gauri ; Tran, Nhan ; Wen, Dahai ; Fahim, Farah ; the CMS Collaboration</creatorcontrib><description>We present a smart pixel prototype readout integrated circuit (ROIC) designed in CMOS 28 nm bulk process, with in-pixel implementation of an artificial intelligence (AI) / machine learning (ML) based data filtering algorithm designed as proof-of-principle for a Phase III upgrade at the Large Hadron Collider (LHC) pixel detector. The first version of the ROIC consists of two matrices of 256 smart pixels, each 25\(\times\)25 \(\mu\)m\(^2\) in size. Each pixel consists of a charge-sensitive preamplifier with leakage current compensation and three auto-zero comparators for a 2-bit flash-type ADC. The frontend is capable of synchronously digitizing the sensor charge within 25 ns. Measurement results show an equivalent noise charge (ENC) of \(\sim\)30e\(^-\) and a total dispersion of \(\sim\)100e\(^-\) The second version of the ROIC uses a fully connected two-layer neural network (NN) to process information from a cluster of 256 pixels to determine if the pattern corresponds to highly desirable high-momentum particle tracks for selection and readout. The digital NN is embedded in-between analog signal processing regions of the 256 pixels without increasing the pixel size and is implemented as fully combinatorial digital logic to minimize power consumption and eliminate clock distribution, and is active only in the presence of an input signal. The total power consumption of the neural network is \(\sim\) 300 \(\mu\)W. The NN performs momentum classification based on the generated cluster patterns and even with a modest momentum threshold, it is capable of 54.4\% - 75.4\% total data rejection, opening the possibility of using the pixel information at 40MHz for the trigger. The total power consumption of analog and digital functions per pixel is \(\sim\) 6 \(\mu\)W per pixel, which corresponds to \(\sim\) 1 W/cm\(^2\) staying within the experimental constraints.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial intelligence ; Clusters ; Combinatorial analysis ; Digitization ; Filtration ; Integrated circuits ; Large Hadron Collider ; Leakage current ; Machine learning ; Momentum ; Neural networks ; Particle tracking ; Pixels ; Power consumption ; Signal processing</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Parpillon, Benjamin</creatorcontrib><creatorcontrib>Syal, Chinar</creatorcontrib><creatorcontrib>Yoo, Jieun</creatorcontrib><creatorcontrib>Dickinson, Jennet</creatorcontrib><creatorcontrib>Swartz, Morris</creatorcontrib><creatorcontrib>Giuseppe Di Guglielmo</creatorcontrib><creatorcontrib>Bean, Alice</creatorcontrib><creatorcontrib>Berry, Douglas</creatorcontrib><creatorcontrib>Manuel Blanco Valentin</creatorcontrib><creatorcontrib>DiPetrillo, Karri</creatorcontrib><creatorcontrib>Badea, Anthony</creatorcontrib><creatorcontrib>Gray, Lindsey</creatorcontrib><creatorcontrib>Maksimovic, Petar</creatorcontrib><creatorcontrib>Mills, Corrinne</creatorcontrib><creatorcontrib>Neubauer, Mark S</creatorcontrib><creatorcontrib>Pradhan, Gauri</creatorcontrib><creatorcontrib>Tran, Nhan</creatorcontrib><creatorcontrib>Wen, Dahai</creatorcontrib><creatorcontrib>Fahim, Farah</creatorcontrib><creatorcontrib>the CMS Collaboration</creatorcontrib><title>Smart Pixels: In-pixel AI for on-sensor data filtering</title><title>arXiv.org</title><description>We present a smart pixel prototype readout integrated circuit (ROIC) designed in CMOS 28 nm bulk process, with in-pixel implementation of an artificial intelligence (AI) / machine learning (ML) based data filtering algorithm designed as proof-of-principle for a Phase III upgrade at the Large Hadron Collider (LHC) pixel detector. The first version of the ROIC consists of two matrices of 256 smart pixels, each 25\(\times\)25 \(\mu\)m\(^2\) in size. Each pixel consists of a charge-sensitive preamplifier with leakage current compensation and three auto-zero comparators for a 2-bit flash-type ADC. The frontend is capable of synchronously digitizing the sensor charge within 25 ns. Measurement results show an equivalent noise charge (ENC) of \(\sim\)30e\(^-\) and a total dispersion of \(\sim\)100e\(^-\) The second version of the ROIC uses a fully connected two-layer neural network (NN) to process information from a cluster of 256 pixels to determine if the pattern corresponds to highly desirable high-momentum particle tracks for selection and readout. The digital NN is embedded in-between analog signal processing regions of the 256 pixels without increasing the pixel size and is implemented as fully combinatorial digital logic to minimize power consumption and eliminate clock distribution, and is active only in the presence of an input signal. The total power consumption of the neural network is \(\sim\) 300 \(\mu\)W. The NN performs momentum classification based on the generated cluster patterns and even with a modest momentum threshold, it is capable of 54.4\% - 75.4\% total data rejection, opening the possibility of using the pixel information at 40MHz for the trigger. The total power consumption of analog and digital functions per pixel is \(\sim\) 6 \(\mu\)W per pixel, which corresponds to \(\sim\) 1 W/cm\(^2\) staying within the experimental constraints.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Clusters</subject><subject>Combinatorial analysis</subject><subject>Digitization</subject><subject>Filtration</subject><subject>Integrated circuits</subject><subject>Large Hadron Collider</subject><subject>Leakage current</subject><subject>Machine learning</subject><subject>Momentum</subject><subject>Neural networks</subject><subject>Particle tracking</subject><subject>Pixels</subject><subject>Power consumption</subject><subject>Signal processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwC85NLCpRCMisSM0ptlLwzNMtADEVHD0V0vKLFPLzdItT84qBrJTEkkSFtMycktSizLx0HgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzYwNzQzNjAyNDUmThUAWwg0Yg</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>Parpillon, Benjamin</creator><creator>Syal, Chinar</creator><creator>Yoo, Jieun</creator><creator>Dickinson, Jennet</creator><creator>Swartz, Morris</creator><creator>Giuseppe Di Guglielmo</creator><creator>Bean, Alice</creator><creator>Berry, Douglas</creator><creator>Manuel Blanco Valentin</creator><creator>DiPetrillo, Karri</creator><creator>Badea, Anthony</creator><creator>Gray, Lindsey</creator><creator>Maksimovic, Petar</creator><creator>Mills, Corrinne</creator><creator>Neubauer, Mark S</creator><creator>Pradhan, Gauri</creator><creator>Tran, Nhan</creator><creator>Wen, Dahai</creator><creator>Fahim, Farah</creator><creator>the CMS Collaboration</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240621</creationdate><title>Smart Pixels: In-pixel AI for on-sensor data filtering</title><author>Parpillon, Benjamin ; Syal, Chinar ; Yoo, Jieun ; Dickinson, Jennet ; Swartz, Morris ; Giuseppe Di Guglielmo ; Bean, Alice ; Berry, Douglas ; Manuel Blanco Valentin ; DiPetrillo, Karri ; Badea, Anthony ; Gray, Lindsey ; Maksimovic, Petar ; Mills, Corrinne ; Neubauer, Mark S ; Pradhan, Gauri ; Tran, Nhan ; Wen, Dahai ; Fahim, Farah ; the CMS Collaboration</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30716302153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Clusters</topic><topic>Combinatorial analysis</topic><topic>Digitization</topic><topic>Filtration</topic><topic>Integrated circuits</topic><topic>Large Hadron Collider</topic><topic>Leakage current</topic><topic>Machine learning</topic><topic>Momentum</topic><topic>Neural networks</topic><topic>Particle tracking</topic><topic>Pixels</topic><topic>Power consumption</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Parpillon, Benjamin</creatorcontrib><creatorcontrib>Syal, Chinar</creatorcontrib><creatorcontrib>Yoo, Jieun</creatorcontrib><creatorcontrib>Dickinson, Jennet</creatorcontrib><creatorcontrib>Swartz, Morris</creatorcontrib><creatorcontrib>Giuseppe Di Guglielmo</creatorcontrib><creatorcontrib>Bean, Alice</creatorcontrib><creatorcontrib>Berry, Douglas</creatorcontrib><creatorcontrib>Manuel Blanco Valentin</creatorcontrib><creatorcontrib>DiPetrillo, Karri</creatorcontrib><creatorcontrib>Badea, Anthony</creatorcontrib><creatorcontrib>Gray, Lindsey</creatorcontrib><creatorcontrib>Maksimovic, Petar</creatorcontrib><creatorcontrib>Mills, Corrinne</creatorcontrib><creatorcontrib>Neubauer, Mark S</creatorcontrib><creatorcontrib>Pradhan, Gauri</creatorcontrib><creatorcontrib>Tran, Nhan</creatorcontrib><creatorcontrib>Wen, Dahai</creatorcontrib><creatorcontrib>Fahim, Farah</creatorcontrib><creatorcontrib>the CMS Collaboration</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parpillon, Benjamin</au><au>Syal, Chinar</au><au>Yoo, Jieun</au><au>Dickinson, Jennet</au><au>Swartz, Morris</au><au>Giuseppe Di Guglielmo</au><au>Bean, Alice</au><au>Berry, Douglas</au><au>Manuel Blanco Valentin</au><au>DiPetrillo, Karri</au><au>Badea, Anthony</au><au>Gray, Lindsey</au><au>Maksimovic, Petar</au><au>Mills, Corrinne</au><au>Neubauer, Mark S</au><au>Pradhan, Gauri</au><au>Tran, Nhan</au><au>Wen, Dahai</au><au>Fahim, Farah</au><au>the CMS Collaboration</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Smart Pixels: In-pixel AI for on-sensor data filtering</atitle><jtitle>arXiv.org</jtitle><date>2024-06-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present a smart pixel prototype readout integrated circuit (ROIC) designed in CMOS 28 nm bulk process, with in-pixel implementation of an artificial intelligence (AI) / machine learning (ML) based data filtering algorithm designed as proof-of-principle for a Phase III upgrade at the Large Hadron Collider (LHC) pixel detector. The first version of the ROIC consists of two matrices of 256 smart pixels, each 25\(\times\)25 \(\mu\)m\(^2\) in size. Each pixel consists of a charge-sensitive preamplifier with leakage current compensation and three auto-zero comparators for a 2-bit flash-type ADC. The frontend is capable of synchronously digitizing the sensor charge within 25 ns. Measurement results show an equivalent noise charge (ENC) of \(\sim\)30e\(^-\) and a total dispersion of \(\sim\)100e\(^-\) The second version of the ROIC uses a fully connected two-layer neural network (NN) to process information from a cluster of 256 pixels to determine if the pattern corresponds to highly desirable high-momentum particle tracks for selection and readout. The digital NN is embedded in-between analog signal processing regions of the 256 pixels without increasing the pixel size and is implemented as fully combinatorial digital logic to minimize power consumption and eliminate clock distribution, and is active only in the presence of an input signal. The total power consumption of the neural network is \(\sim\) 300 \(\mu\)W. The NN performs momentum classification based on the generated cluster patterns and even with a modest momentum threshold, it is capable of 54.4\% - 75.4\% total data rejection, opening the possibility of using the pixel information at 40MHz for the trigger. The total power consumption of analog and digital functions per pixel is \(\sim\) 6 \(\mu\)W per pixel, which corresponds to \(\sim\) 1 W/cm\(^2\) staying within the experimental constraints.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3071630215
source Free E- Journals
subjects Algorithms
Artificial intelligence
Clusters
Combinatorial analysis
Digitization
Filtration
Integrated circuits
Large Hadron Collider
Leakage current
Machine learning
Momentum
Neural networks
Particle tracking
Pixels
Power consumption
Signal processing
title Smart Pixels: In-pixel AI for on-sensor data filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Smart%20Pixels:%20In-pixel%20AI%20for%20on-sensor%20data%20filtering&rft.jtitle=arXiv.org&rft.au=Parpillon,%20Benjamin&rft.date=2024-06-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3071630215%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3071630215&rft_id=info:pmid/&rfr_iscdi=true