A Physics-informed Deep-learning Intensity Prediction Scheme for Tropical Cyclones over the Western North Pacific

Accurate prediction of tropical cyclone (TC) intensity is challenging due to the complex physical processes involved. Here, we introduce a new TC intensity prediction scheme for the western North Pacific (WNP) based on a time-dependent theory of TC intensification, termed the energetically based dyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in atmospheric sciences 2024, Vol.41 (7), p.1391-1402
Hauptverfasser: Zhou, Yitian, Zhan, Ruifen, Wang, Yuqing, Chen, Peiyan, Tan, Zhemin, Xie, Zhipeng, Nie, Xiuwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1402
container_issue 7
container_start_page 1391
container_title Advances in atmospheric sciences
container_volume 41
creator Zhou, Yitian
Zhan, Ruifen
Wang, Yuqing
Chen, Peiyan
Tan, Zhemin
Xie, Zhipeng
Nie, Xiuwen
description Accurate prediction of tropical cyclone (TC) intensity is challenging due to the complex physical processes involved. Here, we introduce a new TC intensity prediction scheme for the western North Pacific (WNP) based on a time-dependent theory of TC intensification, termed the energetically based dynamical system (EBDS) model, together with the use of a long short-term memory (LSTM) neural network. In time-dependent theory, TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors, expressed as environmental dynamical efficiency. The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using best-track TC data and global reanalysis data during 1982–2017. The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System (GFS) of the National Centers for Environmental Prediction during 2017–21. The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity. The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data. The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration (CMA) and those by other state-of-art statistical and dynamical forecast systems, except for the 72-h forecast. Particularly at the longer lead times of 96 h and 120 h, the new scheme has smaller forecast errors, with a more than 30% improvement over the official forecasts.
doi_str_mv 10.1007/s00376-024-3282-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3071257301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071257301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b5276d2f969a83290a4523f64e10504a254b5a825703ffcc15a52f1e2ba2a623</originalsourceid><addsrcrecordid>eNp1kMtKAzEUQIMoWKsf4C7gOprHZB7LUl-FogULLkOa3nRS2qRNRqH9elNGcOXqbs6593IQumX0nlFaPSRKRVUSygsieM3J8QwNWF0y0kghztGAclkSJgW9RFcprTPdiJoN0H6EZ-0hOZOI8zbELSzxI8CObEBH7_wKT3wHPrnugGcRls50Lnj8YVrYAs4Cnsewc0Zv8PhgNsFDwuEbIu5awJ-QOogev4XYtXimjbPOXKMLqzcJbn7nEM2fn-bjVzJ9f5mMR1NiBCs7spC8KpfcNmWja8EbqgvJhS0LYFTSQnNZLKSuuayosNYYJrXklgFfaK5LLoborl-7i2H_lR9R6_AVfb6oBK1Y9gRlmWI9ZWJIKYJVu-i2Oh4Uo-oUVvVhVQ6rTmHVMTu8d1Jm_Qri3-b_pR_8U3v2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071257301</pqid></control><display><type>article</type><title>A Physics-informed Deep-learning Intensity Prediction Scheme for Tropical Cyclones over the Western North Pacific</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Yitian ; Zhan, Ruifen ; Wang, Yuqing ; Chen, Peiyan ; Tan, Zhemin ; Xie, Zhipeng ; Nie, Xiuwen</creator><creatorcontrib>Zhou, Yitian ; Zhan, Ruifen ; Wang, Yuqing ; Chen, Peiyan ; Tan, Zhemin ; Xie, Zhipeng ; Nie, Xiuwen</creatorcontrib><description>Accurate prediction of tropical cyclone (TC) intensity is challenging due to the complex physical processes involved. Here, we introduce a new TC intensity prediction scheme for the western North Pacific (WNP) based on a time-dependent theory of TC intensification, termed the energetically based dynamical system (EBDS) model, together with the use of a long short-term memory (LSTM) neural network. In time-dependent theory, TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors, expressed as environmental dynamical efficiency. The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using best-track TC data and global reanalysis data during 1982–2017. The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System (GFS) of the National Centers for Environmental Prediction during 2017–21. The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity. The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data. The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration (CMA) and those by other state-of-art statistical and dynamical forecast systems, except for the 72-h forecast. Particularly at the longer lead times of 96 h and 120 h, the new scheme has smaller forecast errors, with a more than 30% improvement over the official forecasts.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-024-3282-z</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>AI Applications in Atmospheric and Oceanic Science: Pioneering the Future ; Atmospheric Sciences ; Cyclones ; Deep learning ; Dynamical systems ; Earth and Environmental Science ; Earth Sciences ; Efficiency ; Ensemble learning ; Environmental factors ; Forecast errors ; Geophysics/Geodesy ; Hurricanes ; Long short-term memory ; Meteorology ; Neural networks ; Original Paper ; Physics ; Predictions ; Time dependence ; Transfer learning ; Tropical cyclone intensities ; Tropical cyclones</subject><ispartof>Advances in atmospheric sciences, 2024, Vol.41 (7), p.1391-1402</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2024</rights><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b5276d2f969a83290a4523f64e10504a254b5a825703ffcc15a52f1e2ba2a623</citedby><cites>FETCH-LOGICAL-c316t-b5276d2f969a83290a4523f64e10504a254b5a825703ffcc15a52f1e2ba2a623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-024-3282-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-024-3282-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Zhou, Yitian</creatorcontrib><creatorcontrib>Zhan, Ruifen</creatorcontrib><creatorcontrib>Wang, Yuqing</creatorcontrib><creatorcontrib>Chen, Peiyan</creatorcontrib><creatorcontrib>Tan, Zhemin</creatorcontrib><creatorcontrib>Xie, Zhipeng</creatorcontrib><creatorcontrib>Nie, Xiuwen</creatorcontrib><title>A Physics-informed Deep-learning Intensity Prediction Scheme for Tropical Cyclones over the Western North Pacific</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>Accurate prediction of tropical cyclone (TC) intensity is challenging due to the complex physical processes involved. Here, we introduce a new TC intensity prediction scheme for the western North Pacific (WNP) based on a time-dependent theory of TC intensification, termed the energetically based dynamical system (EBDS) model, together with the use of a long short-term memory (LSTM) neural network. In time-dependent theory, TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors, expressed as environmental dynamical efficiency. The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using best-track TC data and global reanalysis data during 1982–2017. The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System (GFS) of the National Centers for Environmental Prediction during 2017–21. The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity. The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data. The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration (CMA) and those by other state-of-art statistical and dynamical forecast systems, except for the 72-h forecast. Particularly at the longer lead times of 96 h and 120 h, the new scheme has smaller forecast errors, with a more than 30% improvement over the official forecasts.</description><subject>AI Applications in Atmospheric and Oceanic Science: Pioneering the Future</subject><subject>Atmospheric Sciences</subject><subject>Cyclones</subject><subject>Deep learning</subject><subject>Dynamical systems</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Efficiency</subject><subject>Ensemble learning</subject><subject>Environmental factors</subject><subject>Forecast errors</subject><subject>Geophysics/Geodesy</subject><subject>Hurricanes</subject><subject>Long short-term memory</subject><subject>Meteorology</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Predictions</subject><subject>Time dependence</subject><subject>Transfer learning</subject><subject>Tropical cyclone intensities</subject><subject>Tropical cyclones</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUQIMoWKsf4C7gOprHZB7LUl-FogULLkOa3nRS2qRNRqH9elNGcOXqbs6593IQumX0nlFaPSRKRVUSygsieM3J8QwNWF0y0kghztGAclkSJgW9RFcprTPdiJoN0H6EZ-0hOZOI8zbELSzxI8CObEBH7_wKT3wHPrnugGcRls50Lnj8YVrYAs4Cnsewc0Zv8PhgNsFDwuEbIu5awJ-QOogev4XYtXimjbPOXKMLqzcJbn7nEM2fn-bjVzJ9f5mMR1NiBCs7spC8KpfcNmWja8EbqgvJhS0LYFTSQnNZLKSuuayosNYYJrXklgFfaK5LLoborl-7i2H_lR9R6_AVfb6oBK1Y9gRlmWI9ZWJIKYJVu-i2Oh4Uo-oUVvVhVQ6rTmHVMTu8d1Jm_Qri3-b_pR_8U3v2</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhou, Yitian</creator><creator>Zhan, Ruifen</creator><creator>Wang, Yuqing</creator><creator>Chen, Peiyan</creator><creator>Tan, Zhemin</creator><creator>Xie, Zhipeng</creator><creator>Nie, Xiuwen</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>2024</creationdate><title>A Physics-informed Deep-learning Intensity Prediction Scheme for Tropical Cyclones over the Western North Pacific</title><author>Zhou, Yitian ; Zhan, Ruifen ; Wang, Yuqing ; Chen, Peiyan ; Tan, Zhemin ; Xie, Zhipeng ; Nie, Xiuwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b5276d2f969a83290a4523f64e10504a254b5a825703ffcc15a52f1e2ba2a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AI Applications in Atmospheric and Oceanic Science: Pioneering the Future</topic><topic>Atmospheric Sciences</topic><topic>Cyclones</topic><topic>Deep learning</topic><topic>Dynamical systems</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Efficiency</topic><topic>Ensemble learning</topic><topic>Environmental factors</topic><topic>Forecast errors</topic><topic>Geophysics/Geodesy</topic><topic>Hurricanes</topic><topic>Long short-term memory</topic><topic>Meteorology</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Predictions</topic><topic>Time dependence</topic><topic>Transfer learning</topic><topic>Tropical cyclone intensities</topic><topic>Tropical cyclones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yitian</creatorcontrib><creatorcontrib>Zhan, Ruifen</creatorcontrib><creatorcontrib>Wang, Yuqing</creatorcontrib><creatorcontrib>Chen, Peiyan</creatorcontrib><creatorcontrib>Tan, Zhemin</creatorcontrib><creatorcontrib>Xie, Zhipeng</creatorcontrib><creatorcontrib>Nie, Xiuwen</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yitian</au><au>Zhan, Ruifen</au><au>Wang, Yuqing</au><au>Chen, Peiyan</au><au>Tan, Zhemin</au><au>Xie, Zhipeng</au><au>Nie, Xiuwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Physics-informed Deep-learning Intensity Prediction Scheme for Tropical Cyclones over the Western North Pacific</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2024</date><risdate>2024</risdate><volume>41</volume><issue>7</issue><spage>1391</spage><epage>1402</epage><pages>1391-1402</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>Accurate prediction of tropical cyclone (TC) intensity is challenging due to the complex physical processes involved. Here, we introduce a new TC intensity prediction scheme for the western North Pacific (WNP) based on a time-dependent theory of TC intensification, termed the energetically based dynamical system (EBDS) model, together with the use of a long short-term memory (LSTM) neural network. In time-dependent theory, TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors, expressed as environmental dynamical efficiency. The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using best-track TC data and global reanalysis data during 1982–2017. The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System (GFS) of the National Centers for Environmental Prediction during 2017–21. The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity. The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data. The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration (CMA) and those by other state-of-art statistical and dynamical forecast systems, except for the 72-h forecast. Particularly at the longer lead times of 96 h and 120 h, the new scheme has smaller forecast errors, with a more than 30% improvement over the official forecasts.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-024-3282-z</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-1530
ispartof Advances in atmospheric sciences, 2024, Vol.41 (7), p.1391-1402
issn 0256-1530
1861-9533
language eng
recordid cdi_proquest_journals_3071257301
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects AI Applications in Atmospheric and Oceanic Science: Pioneering the Future
Atmospheric Sciences
Cyclones
Deep learning
Dynamical systems
Earth and Environmental Science
Earth Sciences
Efficiency
Ensemble learning
Environmental factors
Forecast errors
Geophysics/Geodesy
Hurricanes
Long short-term memory
Meteorology
Neural networks
Original Paper
Physics
Predictions
Time dependence
Transfer learning
Tropical cyclone intensities
Tropical cyclones
title A Physics-informed Deep-learning Intensity Prediction Scheme for Tropical Cyclones over the Western North Pacific
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Physics-informed%20Deep-learning%20Intensity%20Prediction%20Scheme%20for%20Tropical%20Cyclones%20over%20the%20Western%20North%20Pacific&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Zhou,%20Yitian&rft.date=2024&rft.volume=41&rft.issue=7&rft.spage=1391&rft.epage=1402&rft.pages=1391-1402&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-024-3282-z&rft_dat=%3Cproquest_cross%3E3071257301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3071257301&rft_id=info:pmid/&rfr_iscdi=true