Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion
Considering the increased workload in pathology laboratories today, automated tools such as artificial intelligence models can help pathologists with their tasks and ease the workload. In this paper, we are proposing a segmentation model (DRU-Net) that can provide a delineation of human non-small ce...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Oskouei, Soroush Valla, Marit Pedersen, André Smistad, Erik Dale, Vibeke Grotnes Høibø, Maren Sissel Gyrid Freim Wahl Haugum, Mats Dehli Langø, Thomas Maria Paula Ramnefjell Akslen, Lars Andreas Kiss, Gabriel Sorger, Hanne |
description | Considering the increased workload in pathology laboratories today, automated tools such as artificial intelligence models can help pathologists with their tasks and ease the workload. In this paper, we are proposing a segmentation model (DRU-Net) that can provide a delineation of human non-small cell lung carcinomas and an augmentation method that can improve classification results. The proposed model is a fused combination of truncated pre-trained DenseNet201 and ResNet101V2 as a patch-wise classifier followed by a lightweight U-Net as a refinement model. We have used two datasets (Norwegian Lung Cancer Biobank and Haukeland University Hospital lung cancer cohort) to create our proposed model. The DRU-Net model achieves an average of 0.91 Dice similarity coefficient. The proposed spatial augmentation method (multi-lens distortion) improved the network performance by 3%. Our findings show that choosing image patches that specifically include regions of interest leads to better results for the patch-wise classifier compared to other sampling methods. The qualitative analysis showed that the DRU-Net model is generally successful in detecting the tumor. On the test set, some of the cases showed areas of false positive and false negative segmentation in the periphery, particularly in tumors with inflammatory and reactive changes. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3070881109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070881109</sourcerecordid><originalsourceid>FETCH-proquest_journals_30708811093</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWNR_uOA6kCZqq9tWUVAXPpYiwaalpb1X8_h_K_gBbmY4zGEGLJJKxTydSzliU-caIYRcJnKxUBG7X0zVGfTa14RAJZwI-aXTbQuZ6eMQsIJM22eN1Gm3hj16S0XouYL8fOMn40FjAcfQ-pofDDrIa-fJfg8nbFjq1pnpr8dstt1csx1_WXoH4_yjoWCxnx5KJCJN41is1H_WB36ZQsE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070881109</pqid></control><display><type>article</type><title>Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion</title><source>Freely Accessible Journals</source><creator>Oskouei, Soroush ; Valla, Marit ; Pedersen, André ; Smistad, Erik ; Dale, Vibeke Grotnes ; Høibø, Maren ; Sissel Gyrid Freim Wahl ; Haugum, Mats Dehli ; Langø, Thomas ; Maria Paula Ramnefjell ; Akslen, Lars Andreas ; Kiss, Gabriel ; Sorger, Hanne</creator><creatorcontrib>Oskouei, Soroush ; Valla, Marit ; Pedersen, André ; Smistad, Erik ; Dale, Vibeke Grotnes ; Høibø, Maren ; Sissel Gyrid Freim Wahl ; Haugum, Mats Dehli ; Langø, Thomas ; Maria Paula Ramnefjell ; Akslen, Lars Andreas ; Kiss, Gabriel ; Sorger, Hanne</creatorcontrib><description>Considering the increased workload in pathology laboratories today, automated tools such as artificial intelligence models can help pathologists with their tasks and ease the workload. In this paper, we are proposing a segmentation model (DRU-Net) that can provide a delineation of human non-small cell lung carcinomas and an augmentation method that can improve classification results. The proposed model is a fused combination of truncated pre-trained DenseNet201 and ResNet101V2 as a patch-wise classifier followed by a lightweight U-Net as a refinement model. We have used two datasets (Norwegian Lung Cancer Biobank and Haukeland University Hospital lung cancer cohort) to create our proposed model. The DRU-Net model achieves an average of 0.91 Dice similarity coefficient. The proposed spatial augmentation method (multi-lens distortion) improved the network performance by 3%. Our findings show that choosing image patches that specifically include regions of interest leads to better results for the patch-wise classifier compared to other sampling methods. The qualitative analysis showed that the DRU-Net model is generally successful in detecting the tumor. On the test set, some of the cases showed areas of false positive and false negative segmentation in the periphery, particularly in tumors with inflammatory and reactive changes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Classifiers ; Distortion ; Lenses ; Lung cancer ; Qualitative analysis ; Tumors ; Workload ; Workloads</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Oskouei, Soroush</creatorcontrib><creatorcontrib>Valla, Marit</creatorcontrib><creatorcontrib>Pedersen, André</creatorcontrib><creatorcontrib>Smistad, Erik</creatorcontrib><creatorcontrib>Dale, Vibeke Grotnes</creatorcontrib><creatorcontrib>Høibø, Maren</creatorcontrib><creatorcontrib>Sissel Gyrid Freim Wahl</creatorcontrib><creatorcontrib>Haugum, Mats Dehli</creatorcontrib><creatorcontrib>Langø, Thomas</creatorcontrib><creatorcontrib>Maria Paula Ramnefjell</creatorcontrib><creatorcontrib>Akslen, Lars Andreas</creatorcontrib><creatorcontrib>Kiss, Gabriel</creatorcontrib><creatorcontrib>Sorger, Hanne</creatorcontrib><title>Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion</title><title>arXiv.org</title><description>Considering the increased workload in pathology laboratories today, automated tools such as artificial intelligence models can help pathologists with their tasks and ease the workload. In this paper, we are proposing a segmentation model (DRU-Net) that can provide a delineation of human non-small cell lung carcinomas and an augmentation method that can improve classification results. The proposed model is a fused combination of truncated pre-trained DenseNet201 and ResNet101V2 as a patch-wise classifier followed by a lightweight U-Net as a refinement model. We have used two datasets (Norwegian Lung Cancer Biobank and Haukeland University Hospital lung cancer cohort) to create our proposed model. The DRU-Net model achieves an average of 0.91 Dice similarity coefficient. The proposed spatial augmentation method (multi-lens distortion) improved the network performance by 3%. Our findings show that choosing image patches that specifically include regions of interest leads to better results for the patch-wise classifier compared to other sampling methods. The qualitative analysis showed that the DRU-Net model is generally successful in detecting the tumor. On the test set, some of the cases showed areas of false positive and false negative segmentation in the periphery, particularly in tumors with inflammatory and reactive changes.</description><subject>Artificial intelligence</subject><subject>Classifiers</subject><subject>Distortion</subject><subject>Lenses</subject><subject>Lung cancer</subject><subject>Qualitative analysis</subject><subject>Tumors</subject><subject>Workload</subject><subject>Workloads</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgWNR_uOA6kCZqq9tWUVAXPpYiwaalpb1X8_h_K_gBbmY4zGEGLJJKxTydSzliU-caIYRcJnKxUBG7X0zVGfTa14RAJZwI-aXTbQuZ6eMQsIJM22eN1Gm3hj16S0XouYL8fOMn40FjAcfQ-pofDDrIa-fJfg8nbFjq1pnpr8dstt1csx1_WXoH4_yjoWCxnx5KJCJN41is1H_WB36ZQsE</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Oskouei, Soroush</creator><creator>Valla, Marit</creator><creator>Pedersen, André</creator><creator>Smistad, Erik</creator><creator>Dale, Vibeke Grotnes</creator><creator>Høibø, Maren</creator><creator>Sissel Gyrid Freim Wahl</creator><creator>Haugum, Mats Dehli</creator><creator>Langø, Thomas</creator><creator>Maria Paula Ramnefjell</creator><creator>Akslen, Lars Andreas</creator><creator>Kiss, Gabriel</creator><creator>Sorger, Hanne</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240620</creationdate><title>Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion</title><author>Oskouei, Soroush ; Valla, Marit ; Pedersen, André ; Smistad, Erik ; Dale, Vibeke Grotnes ; Høibø, Maren ; Sissel Gyrid Freim Wahl ; Haugum, Mats Dehli ; Langø, Thomas ; Maria Paula Ramnefjell ; Akslen, Lars Andreas ; Kiss, Gabriel ; Sorger, Hanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30708811093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Classifiers</topic><topic>Distortion</topic><topic>Lenses</topic><topic>Lung cancer</topic><topic>Qualitative analysis</topic><topic>Tumors</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>online_resources</toplevel><creatorcontrib>Oskouei, Soroush</creatorcontrib><creatorcontrib>Valla, Marit</creatorcontrib><creatorcontrib>Pedersen, André</creatorcontrib><creatorcontrib>Smistad, Erik</creatorcontrib><creatorcontrib>Dale, Vibeke Grotnes</creatorcontrib><creatorcontrib>Høibø, Maren</creatorcontrib><creatorcontrib>Sissel Gyrid Freim Wahl</creatorcontrib><creatorcontrib>Haugum, Mats Dehli</creatorcontrib><creatorcontrib>Langø, Thomas</creatorcontrib><creatorcontrib>Maria Paula Ramnefjell</creatorcontrib><creatorcontrib>Akslen, Lars Andreas</creatorcontrib><creatorcontrib>Kiss, Gabriel</creatorcontrib><creatorcontrib>Sorger, Hanne</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oskouei, Soroush</au><au>Valla, Marit</au><au>Pedersen, André</au><au>Smistad, Erik</au><au>Dale, Vibeke Grotnes</au><au>Høibø, Maren</au><au>Sissel Gyrid Freim Wahl</au><au>Haugum, Mats Dehli</au><au>Langø, Thomas</au><au>Maria Paula Ramnefjell</au><au>Akslen, Lars Andreas</au><au>Kiss, Gabriel</au><au>Sorger, Hanne</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion</atitle><jtitle>arXiv.org</jtitle><date>2024-06-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Considering the increased workload in pathology laboratories today, automated tools such as artificial intelligence models can help pathologists with their tasks and ease the workload. In this paper, we are proposing a segmentation model (DRU-Net) that can provide a delineation of human non-small cell lung carcinomas and an augmentation method that can improve classification results. The proposed model is a fused combination of truncated pre-trained DenseNet201 and ResNet101V2 as a patch-wise classifier followed by a lightweight U-Net as a refinement model. We have used two datasets (Norwegian Lung Cancer Biobank and Haukeland University Hospital lung cancer cohort) to create our proposed model. The DRU-Net model achieves an average of 0.91 Dice similarity coefficient. The proposed spatial augmentation method (multi-lens distortion) improved the network performance by 3%. Our findings show that choosing image patches that specifically include regions of interest leads to better results for the patch-wise classifier compared to other sampling methods. The qualitative analysis showed that the DRU-Net model is generally successful in detecting the tumor. On the test set, some of the cases showed areas of false positive and false negative segmentation in the periphery, particularly in tumors with inflammatory and reactive changes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3070881109 |
source | Freely Accessible Journals |
subjects | Artificial intelligence Classifiers Distortion Lenses Lung cancer Qualitative analysis Tumors Workload Workloads |
title | Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Segmentation%20of%20Non-Small%20Cell%20Lung%20Carcinomas:%20Introducing%20DRU-Net%20and%20Multi-Lens%20Distortion&rft.jtitle=arXiv.org&rft.au=Oskouei,%20Soroush&rft.date=2024-06-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3070881109%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070881109&rft_id=info:pmid/&rfr_iscdi=true |