Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion

Considering the increased workload in pathology laboratories today, automated tools such as artificial intelligence models can help pathologists with their tasks and ease the workload. In this paper, we are proposing a segmentation model (DRU-Net) that can provide a delineation of human non-small ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Oskouei, Soroush, Valla, Marit, Pedersen, André, Smistad, Erik, Dale, Vibeke Grotnes, Høibø, Maren, Sissel Gyrid Freim Wahl, Haugum, Mats Dehli, Langø, Thomas, Maria Paula Ramnefjell, Akslen, Lars Andreas, Kiss, Gabriel, Sorger, Hanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Oskouei, Soroush
Valla, Marit
Pedersen, André
Smistad, Erik
Dale, Vibeke Grotnes
Høibø, Maren
Sissel Gyrid Freim Wahl
Haugum, Mats Dehli
Langø, Thomas
Maria Paula Ramnefjell
Akslen, Lars Andreas
Kiss, Gabriel
Sorger, Hanne
description Considering the increased workload in pathology laboratories today, automated tools such as artificial intelligence models can help pathologists with their tasks and ease the workload. In this paper, we are proposing a segmentation model (DRU-Net) that can provide a delineation of human non-small cell lung carcinomas and an augmentation method that can improve classification results. The proposed model is a fused combination of truncated pre-trained DenseNet201 and ResNet101V2 as a patch-wise classifier followed by a lightweight U-Net as a refinement model. We have used two datasets (Norwegian Lung Cancer Biobank and Haukeland University Hospital lung cancer cohort) to create our proposed model. The DRU-Net model achieves an average of 0.91 Dice similarity coefficient. The proposed spatial augmentation method (multi-lens distortion) improved the network performance by 3%. Our findings show that choosing image patches that specifically include regions of interest leads to better results for the patch-wise classifier compared to other sampling methods. The qualitative analysis showed that the DRU-Net model is generally successful in detecting the tumor. On the test set, some of the cases showed areas of false positive and false negative segmentation in the periphery, particularly in tumors with inflammatory and reactive changes.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3070881109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070881109</sourcerecordid><originalsourceid>FETCH-proquest_journals_30708811093</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWNR_uOA6kCZqq9tWUVAXPpYiwaalpb1X8_h_K_gBbmY4zGEGLJJKxTydSzliU-caIYRcJnKxUBG7X0zVGfTa14RAJZwI-aXTbQuZ6eMQsIJM22eN1Gm3hj16S0XouYL8fOMn40FjAcfQ-pofDDrIa-fJfg8nbFjq1pnpr8dstt1csx1_WXoH4_yjoWCxnx5KJCJN41is1H_WB36ZQsE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070881109</pqid></control><display><type>article</type><title>Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion</title><source>Freely Accessible Journals</source><creator>Oskouei, Soroush ; Valla, Marit ; Pedersen, André ; Smistad, Erik ; Dale, Vibeke Grotnes ; Høibø, Maren ; Sissel Gyrid Freim Wahl ; Haugum, Mats Dehli ; Langø, Thomas ; Maria Paula Ramnefjell ; Akslen, Lars Andreas ; Kiss, Gabriel ; Sorger, Hanne</creator><creatorcontrib>Oskouei, Soroush ; Valla, Marit ; Pedersen, André ; Smistad, Erik ; Dale, Vibeke Grotnes ; Høibø, Maren ; Sissel Gyrid Freim Wahl ; Haugum, Mats Dehli ; Langø, Thomas ; Maria Paula Ramnefjell ; Akslen, Lars Andreas ; Kiss, Gabriel ; Sorger, Hanne</creatorcontrib><description>Considering the increased workload in pathology laboratories today, automated tools such as artificial intelligence models can help pathologists with their tasks and ease the workload. In this paper, we are proposing a segmentation model (DRU-Net) that can provide a delineation of human non-small cell lung carcinomas and an augmentation method that can improve classification results. The proposed model is a fused combination of truncated pre-trained DenseNet201 and ResNet101V2 as a patch-wise classifier followed by a lightweight U-Net as a refinement model. We have used two datasets (Norwegian Lung Cancer Biobank and Haukeland University Hospital lung cancer cohort) to create our proposed model. The DRU-Net model achieves an average of 0.91 Dice similarity coefficient. The proposed spatial augmentation method (multi-lens distortion) improved the network performance by 3%. Our findings show that choosing image patches that specifically include regions of interest leads to better results for the patch-wise classifier compared to other sampling methods. The qualitative analysis showed that the DRU-Net model is generally successful in detecting the tumor. On the test set, some of the cases showed areas of false positive and false negative segmentation in the periphery, particularly in tumors with inflammatory and reactive changes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Classifiers ; Distortion ; Lenses ; Lung cancer ; Qualitative analysis ; Tumors ; Workload ; Workloads</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Oskouei, Soroush</creatorcontrib><creatorcontrib>Valla, Marit</creatorcontrib><creatorcontrib>Pedersen, André</creatorcontrib><creatorcontrib>Smistad, Erik</creatorcontrib><creatorcontrib>Dale, Vibeke Grotnes</creatorcontrib><creatorcontrib>Høibø, Maren</creatorcontrib><creatorcontrib>Sissel Gyrid Freim Wahl</creatorcontrib><creatorcontrib>Haugum, Mats Dehli</creatorcontrib><creatorcontrib>Langø, Thomas</creatorcontrib><creatorcontrib>Maria Paula Ramnefjell</creatorcontrib><creatorcontrib>Akslen, Lars Andreas</creatorcontrib><creatorcontrib>Kiss, Gabriel</creatorcontrib><creatorcontrib>Sorger, Hanne</creatorcontrib><title>Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion</title><title>arXiv.org</title><description>Considering the increased workload in pathology laboratories today, automated tools such as artificial intelligence models can help pathologists with their tasks and ease the workload. In this paper, we are proposing a segmentation model (DRU-Net) that can provide a delineation of human non-small cell lung carcinomas and an augmentation method that can improve classification results. The proposed model is a fused combination of truncated pre-trained DenseNet201 and ResNet101V2 as a patch-wise classifier followed by a lightweight U-Net as a refinement model. We have used two datasets (Norwegian Lung Cancer Biobank and Haukeland University Hospital lung cancer cohort) to create our proposed model. The DRU-Net model achieves an average of 0.91 Dice similarity coefficient. The proposed spatial augmentation method (multi-lens distortion) improved the network performance by 3%. Our findings show that choosing image patches that specifically include regions of interest leads to better results for the patch-wise classifier compared to other sampling methods. The qualitative analysis showed that the DRU-Net model is generally successful in detecting the tumor. On the test set, some of the cases showed areas of false positive and false negative segmentation in the periphery, particularly in tumors with inflammatory and reactive changes.</description><subject>Artificial intelligence</subject><subject>Classifiers</subject><subject>Distortion</subject><subject>Lenses</subject><subject>Lung cancer</subject><subject>Qualitative analysis</subject><subject>Tumors</subject><subject>Workload</subject><subject>Workloads</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgWNR_uOA6kCZqq9tWUVAXPpYiwaalpb1X8_h_K_gBbmY4zGEGLJJKxTydSzliU-caIYRcJnKxUBG7X0zVGfTa14RAJZwI-aXTbQuZ6eMQsIJM22eN1Gm3hj16S0XouYL8fOMn40FjAcfQ-pofDDrIa-fJfg8nbFjq1pnpr8dstt1csx1_WXoH4_yjoWCxnx5KJCJN41is1H_WB36ZQsE</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Oskouei, Soroush</creator><creator>Valla, Marit</creator><creator>Pedersen, André</creator><creator>Smistad, Erik</creator><creator>Dale, Vibeke Grotnes</creator><creator>Høibø, Maren</creator><creator>Sissel Gyrid Freim Wahl</creator><creator>Haugum, Mats Dehli</creator><creator>Langø, Thomas</creator><creator>Maria Paula Ramnefjell</creator><creator>Akslen, Lars Andreas</creator><creator>Kiss, Gabriel</creator><creator>Sorger, Hanne</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240620</creationdate><title>Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion</title><author>Oskouei, Soroush ; Valla, Marit ; Pedersen, André ; Smistad, Erik ; Dale, Vibeke Grotnes ; Høibø, Maren ; Sissel Gyrid Freim Wahl ; Haugum, Mats Dehli ; Langø, Thomas ; Maria Paula Ramnefjell ; Akslen, Lars Andreas ; Kiss, Gabriel ; Sorger, Hanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30708811093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Classifiers</topic><topic>Distortion</topic><topic>Lenses</topic><topic>Lung cancer</topic><topic>Qualitative analysis</topic><topic>Tumors</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>online_resources</toplevel><creatorcontrib>Oskouei, Soroush</creatorcontrib><creatorcontrib>Valla, Marit</creatorcontrib><creatorcontrib>Pedersen, André</creatorcontrib><creatorcontrib>Smistad, Erik</creatorcontrib><creatorcontrib>Dale, Vibeke Grotnes</creatorcontrib><creatorcontrib>Høibø, Maren</creatorcontrib><creatorcontrib>Sissel Gyrid Freim Wahl</creatorcontrib><creatorcontrib>Haugum, Mats Dehli</creatorcontrib><creatorcontrib>Langø, Thomas</creatorcontrib><creatorcontrib>Maria Paula Ramnefjell</creatorcontrib><creatorcontrib>Akslen, Lars Andreas</creatorcontrib><creatorcontrib>Kiss, Gabriel</creatorcontrib><creatorcontrib>Sorger, Hanne</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oskouei, Soroush</au><au>Valla, Marit</au><au>Pedersen, André</au><au>Smistad, Erik</au><au>Dale, Vibeke Grotnes</au><au>Høibø, Maren</au><au>Sissel Gyrid Freim Wahl</au><au>Haugum, Mats Dehli</au><au>Langø, Thomas</au><au>Maria Paula Ramnefjell</au><au>Akslen, Lars Andreas</au><au>Kiss, Gabriel</au><au>Sorger, Hanne</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion</atitle><jtitle>arXiv.org</jtitle><date>2024-06-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Considering the increased workload in pathology laboratories today, automated tools such as artificial intelligence models can help pathologists with their tasks and ease the workload. In this paper, we are proposing a segmentation model (DRU-Net) that can provide a delineation of human non-small cell lung carcinomas and an augmentation method that can improve classification results. The proposed model is a fused combination of truncated pre-trained DenseNet201 and ResNet101V2 as a patch-wise classifier followed by a lightweight U-Net as a refinement model. We have used two datasets (Norwegian Lung Cancer Biobank and Haukeland University Hospital lung cancer cohort) to create our proposed model. The DRU-Net model achieves an average of 0.91 Dice similarity coefficient. The proposed spatial augmentation method (multi-lens distortion) improved the network performance by 3%. Our findings show that choosing image patches that specifically include regions of interest leads to better results for the patch-wise classifier compared to other sampling methods. The qualitative analysis showed that the DRU-Net model is generally successful in detecting the tumor. On the test set, some of the cases showed areas of false positive and false negative segmentation in the periphery, particularly in tumors with inflammatory and reactive changes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3070881109
source Freely Accessible Journals
subjects Artificial intelligence
Classifiers
Distortion
Lenses
Lung cancer
Qualitative analysis
Tumors
Workload
Workloads
title Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Segmentation%20of%20Non-Small%20Cell%20Lung%20Carcinomas:%20Introducing%20DRU-Net%20and%20Multi-Lens%20Distortion&rft.jtitle=arXiv.org&rft.au=Oskouei,%20Soroush&rft.date=2024-06-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3070881109%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070881109&rft_id=info:pmid/&rfr_iscdi=true