Automated Bioacoustic Monitoring for South African Bird Species on Unlabeled Data

Analyses for biodiversity monitoring based on passive acoustic monitoring (PAM) recordings is time-consuming and challenged by the presence of background noise in recordings. Existing models for sound event detection (SED) worked only on certain avian species and the development of further models re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Doell, Michael, Kuehn, Dominik, Suessle, Vanessa, Burnett, Matthew J, Downs, Colleen T, Weinmann, Andreas, Hergenroether, Elke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Doell, Michael
Kuehn, Dominik
Suessle, Vanessa
Burnett, Matthew J
Downs, Colleen T
Weinmann, Andreas
Hergenroether, Elke
description Analyses for biodiversity monitoring based on passive acoustic monitoring (PAM) recordings is time-consuming and challenged by the presence of background noise in recordings. Existing models for sound event detection (SED) worked only on certain avian species and the development of further models required labeled data. The developed framework automatically extracted labeled data from available platforms for selected avian species. The labeled data were embedded into recordings, including environmental sounds and noise, and were used to train convolutional recurrent neural network (CRNN) models. The models were evaluated on unprocessed real world data recorded in urban KwaZulu-Natal habitats. The Adapted SED-CRNN model reached a F1 score of 0.73, demonstrating its efficiency under noisy, real-world conditions. The proposed approach to automatically extract labeled data for chosen avian species enables an easy adaption of PAM to other species and habitats for future conservation projects.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3070871297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070871297</sourcerecordid><originalsourceid>FETCH-proquest_journals_30708712973</originalsourceid><addsrcrecordid>eNqNjLsKwjAUQIMgWLT_cMG5kCbW1LG-cHEQdS4xTTWl5tY8_t8OfoDTGc7hTEjCOM-zcsXYjKTed5RSthasKHhCLlUM-JZBN7A1KBVGH4yCM1oT0Bn7hBYdXDGGF1StM0raMXQNXAetjPaAFu62lw_dj4u9DHJBpq3svU5_nJPl8XDbnbLB4SdqH-oOo7OjqjkVtBQ52wj-X_UFhzQ-6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070871297</pqid></control><display><type>article</type><title>Automated Bioacoustic Monitoring for South African Bird Species on Unlabeled Data</title><source>Free E- Journals</source><creator>Doell, Michael ; Kuehn, Dominik ; Suessle, Vanessa ; Burnett, Matthew J ; Downs, Colleen T ; Weinmann, Andreas ; Hergenroether, Elke</creator><creatorcontrib>Doell, Michael ; Kuehn, Dominik ; Suessle, Vanessa ; Burnett, Matthew J ; Downs, Colleen T ; Weinmann, Andreas ; Hergenroether, Elke</creatorcontrib><description>Analyses for biodiversity monitoring based on passive acoustic monitoring (PAM) recordings is time-consuming and challenged by the presence of background noise in recordings. Existing models for sound event detection (SED) worked only on certain avian species and the development of further models required labeled data. The developed framework automatically extracted labeled data from available platforms for selected avian species. The labeled data were embedded into recordings, including environmental sounds and noise, and were used to train convolutional recurrent neural network (CRNN) models. The models were evaluated on unprocessed real world data recorded in urban KwaZulu-Natal habitats. The Adapted SED-CRNN model reached a F1 score of 0.73, demonstrating its efficiency under noisy, real-world conditions. The proposed approach to automatically extract labeled data for chosen avian species enables an easy adaption of PAM to other species and habitats for future conservation projects.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Background noise ; Monitoring ; Recurrent neural networks</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Doell, Michael</creatorcontrib><creatorcontrib>Kuehn, Dominik</creatorcontrib><creatorcontrib>Suessle, Vanessa</creatorcontrib><creatorcontrib>Burnett, Matthew J</creatorcontrib><creatorcontrib>Downs, Colleen T</creatorcontrib><creatorcontrib>Weinmann, Andreas</creatorcontrib><creatorcontrib>Hergenroether, Elke</creatorcontrib><title>Automated Bioacoustic Monitoring for South African Bird Species on Unlabeled Data</title><title>arXiv.org</title><description>Analyses for biodiversity monitoring based on passive acoustic monitoring (PAM) recordings is time-consuming and challenged by the presence of background noise in recordings. Existing models for sound event detection (SED) worked only on certain avian species and the development of further models required labeled data. The developed framework automatically extracted labeled data from available platforms for selected avian species. The labeled data were embedded into recordings, including environmental sounds and noise, and were used to train convolutional recurrent neural network (CRNN) models. The models were evaluated on unprocessed real world data recorded in urban KwaZulu-Natal habitats. The Adapted SED-CRNN model reached a F1 score of 0.73, demonstrating its efficiency under noisy, real-world conditions. The proposed approach to automatically extract labeled data for chosen avian species enables an easy adaption of PAM to other species and habitats for future conservation projects.</description><subject>Background noise</subject><subject>Monitoring</subject><subject>Recurrent neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjLsKwjAUQIMgWLT_cMG5kCbW1LG-cHEQdS4xTTWl5tY8_t8OfoDTGc7hTEjCOM-zcsXYjKTed5RSthasKHhCLlUM-JZBN7A1KBVGH4yCM1oT0Bn7hBYdXDGGF1StM0raMXQNXAetjPaAFu62lw_dj4u9DHJBpq3svU5_nJPl8XDbnbLB4SdqH-oOo7OjqjkVtBQ52wj-X_UFhzQ-6w</recordid><startdate>20240619</startdate><enddate>20240619</enddate><creator>Doell, Michael</creator><creator>Kuehn, Dominik</creator><creator>Suessle, Vanessa</creator><creator>Burnett, Matthew J</creator><creator>Downs, Colleen T</creator><creator>Weinmann, Andreas</creator><creator>Hergenroether, Elke</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240619</creationdate><title>Automated Bioacoustic Monitoring for South African Bird Species on Unlabeled Data</title><author>Doell, Michael ; Kuehn, Dominik ; Suessle, Vanessa ; Burnett, Matthew J ; Downs, Colleen T ; Weinmann, Andreas ; Hergenroether, Elke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30708712973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Background noise</topic><topic>Monitoring</topic><topic>Recurrent neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Doell, Michael</creatorcontrib><creatorcontrib>Kuehn, Dominik</creatorcontrib><creatorcontrib>Suessle, Vanessa</creatorcontrib><creatorcontrib>Burnett, Matthew J</creatorcontrib><creatorcontrib>Downs, Colleen T</creatorcontrib><creatorcontrib>Weinmann, Andreas</creatorcontrib><creatorcontrib>Hergenroether, Elke</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doell, Michael</au><au>Kuehn, Dominik</au><au>Suessle, Vanessa</au><au>Burnett, Matthew J</au><au>Downs, Colleen T</au><au>Weinmann, Andreas</au><au>Hergenroether, Elke</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Automated Bioacoustic Monitoring for South African Bird Species on Unlabeled Data</atitle><jtitle>arXiv.org</jtitle><date>2024-06-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Analyses for biodiversity monitoring based on passive acoustic monitoring (PAM) recordings is time-consuming and challenged by the presence of background noise in recordings. Existing models for sound event detection (SED) worked only on certain avian species and the development of further models required labeled data. The developed framework automatically extracted labeled data from available platforms for selected avian species. The labeled data were embedded into recordings, including environmental sounds and noise, and were used to train convolutional recurrent neural network (CRNN) models. The models were evaluated on unprocessed real world data recorded in urban KwaZulu-Natal habitats. The Adapted SED-CRNN model reached a F1 score of 0.73, demonstrating its efficiency under noisy, real-world conditions. The proposed approach to automatically extract labeled data for chosen avian species enables an easy adaption of PAM to other species and habitats for future conservation projects.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3070871297
source Free E- Journals
subjects Background noise
Monitoring
Recurrent neural networks
title Automated Bioacoustic Monitoring for South African Bird Species on Unlabeled Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Automated%20Bioacoustic%20Monitoring%20for%20South%20African%20Bird%20Species%20on%20Unlabeled%20Data&rft.jtitle=arXiv.org&rft.au=Doell,%20Michael&rft.date=2024-06-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3070871297%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070871297&rft_id=info:pmid/&rfr_iscdi=true