Understanding the Influence of Hydrogen on BCC Iron Grain Boundaries using the Kinetic Activation Relaxation technique (k-ART)

Hydrogen embrittlement (HE) poses a significant challenge in the mechanical integrity of iron and its alloys. This study explores the influence of hydrogen atoms on two distinct grain boundaries (GBs), \(\Sigma37\) and \(\Sigma3\), in body-centered-cubic (BCC) iron. Using the kinetic activation-rela...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Khosravi, Aynour, Song, Jun, Mousseau, Normand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Khosravi, Aynour
Song, Jun
Mousseau, Normand
description Hydrogen embrittlement (HE) poses a significant challenge in the mechanical integrity of iron and its alloys. This study explores the influence of hydrogen atoms on two distinct grain boundaries (GBs), \(\Sigma37\) and \(\Sigma3\), in body-centered-cubic (BCC) iron. Using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo approach, we examine diffusion barriers and mechanisms associated with these GBs. Our findings reveal distinct behaviors of hydrogen in different GB environments, emphasizing the elastic deformation that arises around the GB in the presence of H that leads to either the predominance of new pathways and diffusion routes or a pinning effect of H atoms. We find that, for these systems, while GB is energetically favorable for H, this element diffuses more slowly at the GBs than in the bulk. Moreover, with detailed information about the evolution landscape around GB, we find that the saturation of a GB with hydrogen both stabilizes the GB by shifting barriers associated with Fe diffusion to higher energies and smooths the energy landscape, reducing the number of diffusion events. This comprehensive analysis enhances our understanding of hydrogen's role in GB behavior, contributing valuable insights for the design and optimization of materials in hydrogen-related applications.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3070862012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070862012</sourcerecordid><originalsourceid>FETCH-proquest_journals_30708620123</originalsourceid><addsrcrecordid>eNqNi7sKAjEURIMgKOo_XLDRYiEmvlpdfGG3aC1h965GlxvNQ7Tx2w2ovdWcYc7UWFNIOUimQyEarOPcmXMuxhMxGskme-2pQOu8okLTEfwJYUNlFZByBFPC-llYc0QCQzBPU9jYCCurdKwmUKGsRgfB_c5bTeh1DrPc67vyOtoZVurxQY_5ifQtIPQuySzb9dusXqrKYeebLdZdLnbpOrlaEzXnD2cTLMXpIPmET8eCD4T8z3oD0oFOqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070862012</pqid></control><display><type>article</type><title>Understanding the Influence of Hydrogen on BCC Iron Grain Boundaries using the Kinetic Activation Relaxation technique (k-ART)</title><source>Free E- Journals</source><creator>Khosravi, Aynour ; Song, Jun ; Mousseau, Normand</creator><creatorcontrib>Khosravi, Aynour ; Song, Jun ; Mousseau, Normand</creatorcontrib><description>Hydrogen embrittlement (HE) poses a significant challenge in the mechanical integrity of iron and its alloys. This study explores the influence of hydrogen atoms on two distinct grain boundaries (GBs), \(\Sigma37\) and \(\Sigma3\), in body-centered-cubic (BCC) iron. Using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo approach, we examine diffusion barriers and mechanisms associated with these GBs. Our findings reveal distinct behaviors of hydrogen in different GB environments, emphasizing the elastic deformation that arises around the GB in the presence of H that leads to either the predominance of new pathways and diffusion routes or a pinning effect of H atoms. We find that, for these systems, while GB is energetically favorable for H, this element diffuses more slowly at the GBs than in the bulk. Moreover, with detailed information about the evolution landscape around GB, we find that the saturation of a GB with hydrogen both stabilizes the GB by shifting barriers associated with Fe diffusion to higher energies and smooths the energy landscape, reducing the number of diffusion events. This comprehensive analysis enhances our understanding of hydrogen's role in GB behavior, contributing valuable insights for the design and optimization of materials in hydrogen-related applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cubic lattice ; Design optimization ; Diffusion barriers ; Elastic deformation ; Grain boundaries ; Hydrogen ; Hydrogen atoms ; Hydrogen embrittlement ; Iron</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Khosravi, Aynour</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Mousseau, Normand</creatorcontrib><title>Understanding the Influence of Hydrogen on BCC Iron Grain Boundaries using the Kinetic Activation Relaxation technique (k-ART)</title><title>arXiv.org</title><description>Hydrogen embrittlement (HE) poses a significant challenge in the mechanical integrity of iron and its alloys. This study explores the influence of hydrogen atoms on two distinct grain boundaries (GBs), \(\Sigma37\) and \(\Sigma3\), in body-centered-cubic (BCC) iron. Using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo approach, we examine diffusion barriers and mechanisms associated with these GBs. Our findings reveal distinct behaviors of hydrogen in different GB environments, emphasizing the elastic deformation that arises around the GB in the presence of H that leads to either the predominance of new pathways and diffusion routes or a pinning effect of H atoms. We find that, for these systems, while GB is energetically favorable for H, this element diffuses more slowly at the GBs than in the bulk. Moreover, with detailed information about the evolution landscape around GB, we find that the saturation of a GB with hydrogen both stabilizes the GB by shifting barriers associated with Fe diffusion to higher energies and smooths the energy landscape, reducing the number of diffusion events. This comprehensive analysis enhances our understanding of hydrogen's role in GB behavior, contributing valuable insights for the design and optimization of materials in hydrogen-related applications.</description><subject>Cubic lattice</subject><subject>Design optimization</subject><subject>Diffusion barriers</subject><subject>Elastic deformation</subject><subject>Grain boundaries</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>Hydrogen embrittlement</subject><subject>Iron</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7sKAjEURIMgKOo_XLDRYiEmvlpdfGG3aC1h965GlxvNQ7Tx2w2ovdWcYc7UWFNIOUimQyEarOPcmXMuxhMxGskme-2pQOu8okLTEfwJYUNlFZByBFPC-llYc0QCQzBPU9jYCCurdKwmUKGsRgfB_c5bTeh1DrPc67vyOtoZVurxQY_5ifQtIPQuySzb9dusXqrKYeebLdZdLnbpOrlaEzXnD2cTLMXpIPmET8eCD4T8z3oD0oFOqQ</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Khosravi, Aynour</creator><creator>Song, Jun</creator><creator>Mousseau, Normand</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240703</creationdate><title>Understanding the Influence of Hydrogen on BCC Iron Grain Boundaries using the Kinetic Activation Relaxation technique (k-ART)</title><author>Khosravi, Aynour ; Song, Jun ; Mousseau, Normand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30708620123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cubic lattice</topic><topic>Design optimization</topic><topic>Diffusion barriers</topic><topic>Elastic deformation</topic><topic>Grain boundaries</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>Hydrogen embrittlement</topic><topic>Iron</topic><toplevel>online_resources</toplevel><creatorcontrib>Khosravi, Aynour</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Mousseau, Normand</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khosravi, Aynour</au><au>Song, Jun</au><au>Mousseau, Normand</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Understanding the Influence of Hydrogen on BCC Iron Grain Boundaries using the Kinetic Activation Relaxation technique (k-ART)</atitle><jtitle>arXiv.org</jtitle><date>2024-07-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Hydrogen embrittlement (HE) poses a significant challenge in the mechanical integrity of iron and its alloys. This study explores the influence of hydrogen atoms on two distinct grain boundaries (GBs), \(\Sigma37\) and \(\Sigma3\), in body-centered-cubic (BCC) iron. Using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo approach, we examine diffusion barriers and mechanisms associated with these GBs. Our findings reveal distinct behaviors of hydrogen in different GB environments, emphasizing the elastic deformation that arises around the GB in the presence of H that leads to either the predominance of new pathways and diffusion routes or a pinning effect of H atoms. We find that, for these systems, while GB is energetically favorable for H, this element diffuses more slowly at the GBs than in the bulk. Moreover, with detailed information about the evolution landscape around GB, we find that the saturation of a GB with hydrogen both stabilizes the GB by shifting barriers associated with Fe diffusion to higher energies and smooths the energy landscape, reducing the number of diffusion events. This comprehensive analysis enhances our understanding of hydrogen's role in GB behavior, contributing valuable insights for the design and optimization of materials in hydrogen-related applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3070862012
source Free E- Journals
subjects Cubic lattice
Design optimization
Diffusion barriers
Elastic deformation
Grain boundaries
Hydrogen
Hydrogen atoms
Hydrogen embrittlement
Iron
title Understanding the Influence of Hydrogen on BCC Iron Grain Boundaries using the Kinetic Activation Relaxation technique (k-ART)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Understanding%20the%20Influence%20of%20Hydrogen%20on%20BCC%20Iron%20Grain%20Boundaries%20using%20the%20Kinetic%20Activation%20Relaxation%20technique%20(k-ART)&rft.jtitle=arXiv.org&rft.au=Khosravi,%20Aynour&rft.date=2024-07-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3070862012%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070862012&rft_id=info:pmid/&rfr_iscdi=true