Pursuing Coxeter theory for Kac-Moody affine Hecke algebras

The Kac-Moody affine Hecke algebra \(\mathcal{H}\) was first constructed as the Iwahori-Hecke algebra of a \(p\)-adic Kac-Moody group by work of Braverman, Kazhdan, and Patnaik, and by work of Bardy-Panse, Gaussent, and Rousseau. Since \(\mathcal{H}\) has a Bernstein presentation, for affine types i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Muthiah, Dinakar, Puskás, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Muthiah, Dinakar
Puskás, Anna
description The Kac-Moody affine Hecke algebra \(\mathcal{H}\) was first constructed as the Iwahori-Hecke algebra of a \(p\)-adic Kac-Moody group by work of Braverman, Kazhdan, and Patnaik, and by work of Bardy-Panse, Gaussent, and Rousseau. Since \(\mathcal{H}\) has a Bernstein presentation, for affine types it is a positive-level variation of Cherednik's double affine Hecke algebra. Moreover, as \(\mathcal{H}\) is realized as a convolution algebra, it has an additional "\(T\)-basis" corresponding to indicator functions of double cosets. For classical affine Hecke algebras, this \(T\)-basis reflects the Coxeter group structure of the affine Weyl group. In the Kac-Moody affine context, the indexing set \(W_{\mathcal{T}}\) for the \(T\)-basis is no longer a Coxeter group. Nonetheless, \(W_{\mathcal{T}}\) carries some Coxeter-like structures: a Bruhat order, a length function, and a notion of inversion sets. This paper contains the first steps toward a Coxeter theory for Kac-Moody affine Hecke algebras. We prove three results. The first is a construction of the length function via a representation of \(\mathcal{H}\). The second concerns the support of products in classical affine Hecke algebras. The third is a characterization of length deficits in the Kac-Moody affine setting via inversion sets. Using this characterization, we phrase our support theorem as a precise conjecture for Kac-Moody affine Hecke algebras. Lastly, we give a conjectural definition of a Kac-Moody affine Demazure product via the \(q=0\) specialization of \(\mathcal{H}\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3070860259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070860259</sourcerecordid><originalsourceid>FETCH-proquest_journals_30708602593</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDigtKi7NzEtXcM6vSC1JLVIoyUjNL6pUSMsvUvBOTNb1zc9PqVRITEvLzEtV8EhNzk5VSMxJT00qSizmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4YwNzAwszAyNTS2PiVAEA3Nw21w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070860259</pqid></control><display><type>article</type><title>Pursuing Coxeter theory for Kac-Moody affine Hecke algebras</title><source>Free E- Journals</source><creator>Muthiah, Dinakar ; Puskás, Anna</creator><creatorcontrib>Muthiah, Dinakar ; Puskás, Anna</creatorcontrib><description>The Kac-Moody affine Hecke algebra \(\mathcal{H}\) was first constructed as the Iwahori-Hecke algebra of a \(p\)-adic Kac-Moody group by work of Braverman, Kazhdan, and Patnaik, and by work of Bardy-Panse, Gaussent, and Rousseau. Since \(\mathcal{H}\) has a Bernstein presentation, for affine types it is a positive-level variation of Cherednik's double affine Hecke algebra. Moreover, as \(\mathcal{H}\) is realized as a convolution algebra, it has an additional "\(T\)-basis" corresponding to indicator functions of double cosets. For classical affine Hecke algebras, this \(T\)-basis reflects the Coxeter group structure of the affine Weyl group. In the Kac-Moody affine context, the indexing set \(W_{\mathcal{T}}\) for the \(T\)-basis is no longer a Coxeter group. Nonetheless, \(W_{\mathcal{T}}\) carries some Coxeter-like structures: a Bruhat order, a length function, and a notion of inversion sets. This paper contains the first steps toward a Coxeter theory for Kac-Moody affine Hecke algebras. We prove three results. The first is a construction of the length function via a representation of \(\mathcal{H}\). The second concerns the support of products in classical affine Hecke algebras. The third is a characterization of length deficits in the Kac-Moody affine setting via inversion sets. Using this characterization, we phrase our support theorem as a precise conjecture for Kac-Moody affine Hecke algebras. Lastly, we give a conjectural definition of a Kac-Moody affine Demazure product via the \(q=0\) specialization of \(\mathcal{H}\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Group theory ; Mathematical analysis</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Muthiah, Dinakar</creatorcontrib><creatorcontrib>Puskás, Anna</creatorcontrib><title>Pursuing Coxeter theory for Kac-Moody affine Hecke algebras</title><title>arXiv.org</title><description>The Kac-Moody affine Hecke algebra \(\mathcal{H}\) was first constructed as the Iwahori-Hecke algebra of a \(p\)-adic Kac-Moody group by work of Braverman, Kazhdan, and Patnaik, and by work of Bardy-Panse, Gaussent, and Rousseau. Since \(\mathcal{H}\) has a Bernstein presentation, for affine types it is a positive-level variation of Cherednik's double affine Hecke algebra. Moreover, as \(\mathcal{H}\) is realized as a convolution algebra, it has an additional "\(T\)-basis" corresponding to indicator functions of double cosets. For classical affine Hecke algebras, this \(T\)-basis reflects the Coxeter group structure of the affine Weyl group. In the Kac-Moody affine context, the indexing set \(W_{\mathcal{T}}\) for the \(T\)-basis is no longer a Coxeter group. Nonetheless, \(W_{\mathcal{T}}\) carries some Coxeter-like structures: a Bruhat order, a length function, and a notion of inversion sets. This paper contains the first steps toward a Coxeter theory for Kac-Moody affine Hecke algebras. We prove three results. The first is a construction of the length function via a representation of \(\mathcal{H}\). The second concerns the support of products in classical affine Hecke algebras. The third is a characterization of length deficits in the Kac-Moody affine setting via inversion sets. Using this characterization, we phrase our support theorem as a precise conjecture for Kac-Moody affine Hecke algebras. Lastly, we give a conjectural definition of a Kac-Moody affine Demazure product via the \(q=0\) specialization of \(\mathcal{H}\).</description><subject>Algebra</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDigtKi7NzEtXcM6vSC1JLVIoyUjNL6pUSMsvUvBOTNb1zc9PqVRITEvLzEtV8EhNzk5VSMxJT00qSizmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4YwNzAwszAyNTS2PiVAEA3Nw21w</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Muthiah, Dinakar</creator><creator>Puskás, Anna</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240620</creationdate><title>Pursuing Coxeter theory for Kac-Moody affine Hecke algebras</title><author>Muthiah, Dinakar ; Puskás, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30708602593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Muthiah, Dinakar</creatorcontrib><creatorcontrib>Puskás, Anna</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthiah, Dinakar</au><au>Puskás, Anna</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pursuing Coxeter theory for Kac-Moody affine Hecke algebras</atitle><jtitle>arXiv.org</jtitle><date>2024-06-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The Kac-Moody affine Hecke algebra \(\mathcal{H}\) was first constructed as the Iwahori-Hecke algebra of a \(p\)-adic Kac-Moody group by work of Braverman, Kazhdan, and Patnaik, and by work of Bardy-Panse, Gaussent, and Rousseau. Since \(\mathcal{H}\) has a Bernstein presentation, for affine types it is a positive-level variation of Cherednik's double affine Hecke algebra. Moreover, as \(\mathcal{H}\) is realized as a convolution algebra, it has an additional "\(T\)-basis" corresponding to indicator functions of double cosets. For classical affine Hecke algebras, this \(T\)-basis reflects the Coxeter group structure of the affine Weyl group. In the Kac-Moody affine context, the indexing set \(W_{\mathcal{T}}\) for the \(T\)-basis is no longer a Coxeter group. Nonetheless, \(W_{\mathcal{T}}\) carries some Coxeter-like structures: a Bruhat order, a length function, and a notion of inversion sets. This paper contains the first steps toward a Coxeter theory for Kac-Moody affine Hecke algebras. We prove three results. The first is a construction of the length function via a representation of \(\mathcal{H}\). The second concerns the support of products in classical affine Hecke algebras. The third is a characterization of length deficits in the Kac-Moody affine setting via inversion sets. Using this characterization, we phrase our support theorem as a precise conjecture for Kac-Moody affine Hecke algebras. Lastly, we give a conjectural definition of a Kac-Moody affine Demazure product via the \(q=0\) specialization of \(\mathcal{H}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3070860259
source Free E- Journals
subjects Algebra
Group theory
Mathematical analysis
title Pursuing Coxeter theory for Kac-Moody affine Hecke algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pursuing%20Coxeter%20theory%20for%20Kac-Moody%20affine%20Hecke%20algebras&rft.jtitle=arXiv.org&rft.au=Muthiah,%20Dinakar&rft.date=2024-06-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3070860259%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070860259&rft_id=info:pmid/&rfr_iscdi=true