Superfluid Stiffness and Flat-Band Superconductivity in Magic-Angle Graphene Probed by cQED
The physics of superconductivity in magic-angle twisted bilayer graphene (MATBG) is a topic of keen interest in moiré systems research, and it may provide insight into the pairing mechanism of other strongly correlated materials such as high-\(T_{\mathrm{c}}\) superconductors. Here, we use DC-transp...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tanaka, Miuko Wang, Joel Î-j Dinh, Thao H Rodan-Legrain, Daniel Zaman, Sameia Hays, Max Kannan, Bharath Almanakly, Aziza Kim, David K Niedzielski, Bethany M Serniak, Kyle Schwartz, Mollie E Watanabe, Kenji Taniguchi, Takashi Grover, Jeffrey A Orlando, Terry P Gustavsson, Simon Jarillo-Herrero, Pablo Oliver, William D |
description | The physics of superconductivity in magic-angle twisted bilayer graphene (MATBG) is a topic of keen interest in moiré systems research, and it may provide insight into the pairing mechanism of other strongly correlated materials such as high-\(T_{\mathrm{c}}\) superconductors. Here, we use DC-transport and microwave circuit quantum electrodynamics (cQED) to measure directly the superfluid stiffness of superconducting MATBG via its kinetic inductance. We find the superfluid stiffness to be much larger than expected from conventional Fermi liquid theory; rather, it is comparable to theoretical predictions involving quantum geometric effects that are dominant at the magic angle. The temperature dependence of the superfluid stiffness follows a power-law, which contraindicates an isotropic BCS model; instead, the extracted power-law exponents indicate an anisotropic superconducting gap, whether interpreted within the Fermi liquid framework or by considering quantum geometry of flat-band superconductivity. Moreover, a quadratic dependence of the superfluid stiffness on both DC and microwave current is observed, which is consistent with Ginzburg-Landau theory. Taken together, our findings indicate that MATBG is an unconventional superconductor with an anisotropic gap and strongly suggest a connection between quantum geometry, superfluid stiffness, and unconventional superconductivity in MATBG. The combined DC-microwave measurement platform used here is applicable to the investigation of other atomically thin superconductors. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3070858890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070858890</sourcerecordid><originalsourceid>FETCH-proquest_journals_30708588903</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNB6YJrJtGUPrU1Q2K6FjDraiIw2j8C_70Ef0OocOGeEPMrYAkdLSifIN6YhhNBVSIOAeeiWul7oqnWyhNTKqlLCGOCqhKTlFm8_9l2KTpWusPIp7QBSwYnXssAbVbcCDpr3d6EEnHWXixLyAYpLvJ-hccVbI_wfp2iexNfdEfe6ezhhbNZ0Tqt3yhgJSRRE0Zqw_64XNndCUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070858890</pqid></control><display><type>article</type><title>Superfluid Stiffness and Flat-Band Superconductivity in Magic-Angle Graphene Probed by cQED</title><source>Free E- Journals</source><creator>Tanaka, Miuko ; Wang, Joel Î-j ; Dinh, Thao H ; Rodan-Legrain, Daniel ; Zaman, Sameia ; Hays, Max ; Kannan, Bharath ; Almanakly, Aziza ; Kim, David K ; Niedzielski, Bethany M ; Serniak, Kyle ; Schwartz, Mollie E ; Watanabe, Kenji ; Taniguchi, Takashi ; Grover, Jeffrey A ; Orlando, Terry P ; Gustavsson, Simon ; Jarillo-Herrero, Pablo ; Oliver, William D</creator><creatorcontrib>Tanaka, Miuko ; Wang, Joel Î-j ; Dinh, Thao H ; Rodan-Legrain, Daniel ; Zaman, Sameia ; Hays, Max ; Kannan, Bharath ; Almanakly, Aziza ; Kim, David K ; Niedzielski, Bethany M ; Serniak, Kyle ; Schwartz, Mollie E ; Watanabe, Kenji ; Taniguchi, Takashi ; Grover, Jeffrey A ; Orlando, Terry P ; Gustavsson, Simon ; Jarillo-Herrero, Pablo ; Oliver, William D</creatorcontrib><description>The physics of superconductivity in magic-angle twisted bilayer graphene (MATBG) is a topic of keen interest in moiré systems research, and it may provide insight into the pairing mechanism of other strongly correlated materials such as high-\(T_{\mathrm{c}}\) superconductors. Here, we use DC-transport and microwave circuit quantum electrodynamics (cQED) to measure directly the superfluid stiffness of superconducting MATBG via its kinetic inductance. We find the superfluid stiffness to be much larger than expected from conventional Fermi liquid theory; rather, it is comparable to theoretical predictions involving quantum geometric effects that are dominant at the magic angle. The temperature dependence of the superfluid stiffness follows a power-law, which contraindicates an isotropic BCS model; instead, the extracted power-law exponents indicate an anisotropic superconducting gap, whether interpreted within the Fermi liquid framework or by considering quantum geometry of flat-band superconductivity. Moreover, a quadratic dependence of the superfluid stiffness on both DC and microwave current is observed, which is consistent with Ginzburg-Landau theory. Taken together, our findings indicate that MATBG is an unconventional superconductor with an anisotropic gap and strongly suggest a connection between quantum geometry, superfluid stiffness, and unconventional superconductivity in MATBG. The combined DC-microwave measurement platform used here is applicable to the investigation of other atomically thin superconductors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Angles (geometry) ; Bilayers ; Fermi liquids ; Fluids ; Graphene ; Inductance ; Microwave circuits ; Power law ; Quantum electrodynamics ; Stiffness ; Superconductivity ; Superconductors ; Superfluidity ; Temperature dependence ; Unconventional superconductivity</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tanaka, Miuko</creatorcontrib><creatorcontrib>Wang, Joel Î-j</creatorcontrib><creatorcontrib>Dinh, Thao H</creatorcontrib><creatorcontrib>Rodan-Legrain, Daniel</creatorcontrib><creatorcontrib>Zaman, Sameia</creatorcontrib><creatorcontrib>Hays, Max</creatorcontrib><creatorcontrib>Kannan, Bharath</creatorcontrib><creatorcontrib>Almanakly, Aziza</creatorcontrib><creatorcontrib>Kim, David K</creatorcontrib><creatorcontrib>Niedzielski, Bethany M</creatorcontrib><creatorcontrib>Serniak, Kyle</creatorcontrib><creatorcontrib>Schwartz, Mollie E</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Grover, Jeffrey A</creatorcontrib><creatorcontrib>Orlando, Terry P</creatorcontrib><creatorcontrib>Gustavsson, Simon</creatorcontrib><creatorcontrib>Jarillo-Herrero, Pablo</creatorcontrib><creatorcontrib>Oliver, William D</creatorcontrib><title>Superfluid Stiffness and Flat-Band Superconductivity in Magic-Angle Graphene Probed by cQED</title><title>arXiv.org</title><description>The physics of superconductivity in magic-angle twisted bilayer graphene (MATBG) is a topic of keen interest in moiré systems research, and it may provide insight into the pairing mechanism of other strongly correlated materials such as high-\(T_{\mathrm{c}}\) superconductors. Here, we use DC-transport and microwave circuit quantum electrodynamics (cQED) to measure directly the superfluid stiffness of superconducting MATBG via its kinetic inductance. We find the superfluid stiffness to be much larger than expected from conventional Fermi liquid theory; rather, it is comparable to theoretical predictions involving quantum geometric effects that are dominant at the magic angle. The temperature dependence of the superfluid stiffness follows a power-law, which contraindicates an isotropic BCS model; instead, the extracted power-law exponents indicate an anisotropic superconducting gap, whether interpreted within the Fermi liquid framework or by considering quantum geometry of flat-band superconductivity. Moreover, a quadratic dependence of the superfluid stiffness on both DC and microwave current is observed, which is consistent with Ginzburg-Landau theory. Taken together, our findings indicate that MATBG is an unconventional superconductor with an anisotropic gap and strongly suggest a connection between quantum geometry, superfluid stiffness, and unconventional superconductivity in MATBG. The combined DC-microwave measurement platform used here is applicable to the investigation of other atomically thin superconductors.</description><subject>Angles (geometry)</subject><subject>Bilayers</subject><subject>Fermi liquids</subject><subject>Fluids</subject><subject>Graphene</subject><subject>Inductance</subject><subject>Microwave circuits</subject><subject>Power law</subject><subject>Quantum electrodynamics</subject><subject>Stiffness</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Superfluidity</subject><subject>Temperature dependence</subject><subject>Unconventional superconductivity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNB6YJrJtGUPrU1Q2K6FjDraiIw2j8C_70Ef0OocOGeEPMrYAkdLSifIN6YhhNBVSIOAeeiWul7oqnWyhNTKqlLCGOCqhKTlFm8_9l2KTpWusPIp7QBSwYnXssAbVbcCDpr3d6EEnHWXixLyAYpLvJ-hccVbI_wfp2iexNfdEfe6ezhhbNZ0Tqt3yhgJSRRE0Zqw_64XNndCUg</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Tanaka, Miuko</creator><creator>Wang, Joel Î-j</creator><creator>Dinh, Thao H</creator><creator>Rodan-Legrain, Daniel</creator><creator>Zaman, Sameia</creator><creator>Hays, Max</creator><creator>Kannan, Bharath</creator><creator>Almanakly, Aziza</creator><creator>Kim, David K</creator><creator>Niedzielski, Bethany M</creator><creator>Serniak, Kyle</creator><creator>Schwartz, Mollie E</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Grover, Jeffrey A</creator><creator>Orlando, Terry P</creator><creator>Gustavsson, Simon</creator><creator>Jarillo-Herrero, Pablo</creator><creator>Oliver, William D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241031</creationdate><title>Superfluid Stiffness and Flat-Band Superconductivity in Magic-Angle Graphene Probed by cQED</title><author>Tanaka, Miuko ; Wang, Joel Î-j ; Dinh, Thao H ; Rodan-Legrain, Daniel ; Zaman, Sameia ; Hays, Max ; Kannan, Bharath ; Almanakly, Aziza ; Kim, David K ; Niedzielski, Bethany M ; Serniak, Kyle ; Schwartz, Mollie E ; Watanabe, Kenji ; Taniguchi, Takashi ; Grover, Jeffrey A ; Orlando, Terry P ; Gustavsson, Simon ; Jarillo-Herrero, Pablo ; Oliver, William D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30708588903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angles (geometry)</topic><topic>Bilayers</topic><topic>Fermi liquids</topic><topic>Fluids</topic><topic>Graphene</topic><topic>Inductance</topic><topic>Microwave circuits</topic><topic>Power law</topic><topic>Quantum electrodynamics</topic><topic>Stiffness</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Superfluidity</topic><topic>Temperature dependence</topic><topic>Unconventional superconductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Miuko</creatorcontrib><creatorcontrib>Wang, Joel Î-j</creatorcontrib><creatorcontrib>Dinh, Thao H</creatorcontrib><creatorcontrib>Rodan-Legrain, Daniel</creatorcontrib><creatorcontrib>Zaman, Sameia</creatorcontrib><creatorcontrib>Hays, Max</creatorcontrib><creatorcontrib>Kannan, Bharath</creatorcontrib><creatorcontrib>Almanakly, Aziza</creatorcontrib><creatorcontrib>Kim, David K</creatorcontrib><creatorcontrib>Niedzielski, Bethany M</creatorcontrib><creatorcontrib>Serniak, Kyle</creatorcontrib><creatorcontrib>Schwartz, Mollie E</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Grover, Jeffrey A</creatorcontrib><creatorcontrib>Orlando, Terry P</creatorcontrib><creatorcontrib>Gustavsson, Simon</creatorcontrib><creatorcontrib>Jarillo-Herrero, Pablo</creatorcontrib><creatorcontrib>Oliver, William D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Miuko</au><au>Wang, Joel Î-j</au><au>Dinh, Thao H</au><au>Rodan-Legrain, Daniel</au><au>Zaman, Sameia</au><au>Hays, Max</au><au>Kannan, Bharath</au><au>Almanakly, Aziza</au><au>Kim, David K</au><au>Niedzielski, Bethany M</au><au>Serniak, Kyle</au><au>Schwartz, Mollie E</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Grover, Jeffrey A</au><au>Orlando, Terry P</au><au>Gustavsson, Simon</au><au>Jarillo-Herrero, Pablo</au><au>Oliver, William D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Superfluid Stiffness and Flat-Band Superconductivity in Magic-Angle Graphene Probed by cQED</atitle><jtitle>arXiv.org</jtitle><date>2024-10-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The physics of superconductivity in magic-angle twisted bilayer graphene (MATBG) is a topic of keen interest in moiré systems research, and it may provide insight into the pairing mechanism of other strongly correlated materials such as high-\(T_{\mathrm{c}}\) superconductors. Here, we use DC-transport and microwave circuit quantum electrodynamics (cQED) to measure directly the superfluid stiffness of superconducting MATBG via its kinetic inductance. We find the superfluid stiffness to be much larger than expected from conventional Fermi liquid theory; rather, it is comparable to theoretical predictions involving quantum geometric effects that are dominant at the magic angle. The temperature dependence of the superfluid stiffness follows a power-law, which contraindicates an isotropic BCS model; instead, the extracted power-law exponents indicate an anisotropic superconducting gap, whether interpreted within the Fermi liquid framework or by considering quantum geometry of flat-band superconductivity. Moreover, a quadratic dependence of the superfluid stiffness on both DC and microwave current is observed, which is consistent with Ginzburg-Landau theory. Taken together, our findings indicate that MATBG is an unconventional superconductor with an anisotropic gap and strongly suggest a connection between quantum geometry, superfluid stiffness, and unconventional superconductivity in MATBG. The combined DC-microwave measurement platform used here is applicable to the investigation of other atomically thin superconductors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3070858890 |
source | Free E- Journals |
subjects | Angles (geometry) Bilayers Fermi liquids Fluids Graphene Inductance Microwave circuits Power law Quantum electrodynamics Stiffness Superconductivity Superconductors Superfluidity Temperature dependence Unconventional superconductivity |
title | Superfluid Stiffness and Flat-Band Superconductivity in Magic-Angle Graphene Probed by cQED |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Superfluid%20Stiffness%20and%20Flat-Band%20Superconductivity%20in%20Magic-Angle%20Graphene%20Probed%20by%20cQED&rft.jtitle=arXiv.org&rft.au=Tanaka,%20Miuko&rft.date=2024-10-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3070858890%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070858890&rft_id=info:pmid/&rfr_iscdi=true |