volatilityforecastingpackage: A Financial Volatility Package in Mathematica

The relevance of financial volatility forecasting in efficient decision making regarding risk-related assets cannot be subdued. In the financial world, asset price volatility plays a pivotal role in investment decision making and portfolio setups. The prediction of these volatilities usually deal wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2024-06, Vol.63 (6), p.2307-2324
Hauptverfasser: Khodabaccus, Noorshanaaz, Saib, Aslam A. E. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2324
container_issue 6
container_start_page 2307
container_title Computational economics
container_volume 63
creator Khodabaccus, Noorshanaaz
Saib, Aslam A. E. F.
description The relevance of financial volatility forecasting in efficient decision making regarding risk-related assets cannot be subdued. In the financial world, asset price volatility plays a pivotal role in investment decision making and portfolio setups. The prediction of these volatilities usually deal with noisy and non-stationary data bearing heteroscedastic nature. This paper introduces the volatilityforecastingpackage for financial volatility modelling, forecasting and visualization using state-of-the art algorithms. This package allows recourse to algorithms through a user friendly interface supported by the Mathematica framework, that provides easy access to models for high and low frequency data, while accessibly generating forecasts, estimating errors and generating plots. The package also allows analysis of user data and based on the results, a set of models appropriate for the data is suggested for eventual use.
doi_str_mv 10.1007/s10614-023-10406-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3070855295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070855295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e8d89633f0d9b70da3051ad899b7682cb70f1db49683004a735d166b31ca4a093</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOdmzHbFVFAVEEAyA2y3Gc4pImxU6R-u8xBNGN6XT3vnd3egidEjgnAPIiEhAkx0AZJpCDwHQPjQiXFCsl8300AkUllqDUITqKcQkAnFA6QnefXWN63_h-W3fBWRN73y7Wxr6bhbvMJtnMt6a13jTZyx-ZPQ565tvs3vRvbpUEa47RQW2a6E5-6xg9z66epjd4_nB9O53MsWUCeuyKqlCCsRoqVUqoDEu_mDRLnSioTbOaVGWuRMEAciMZr4gQJSPW5AYUG6OzYe86dB8bF3u97DahTSc1AwkF51TxRNGBsqGLMbhar4NfmbDVBPR3aHoITafQ9E9omiZTNpic7Vofd5ZCFZxwgNeEsAGJSWwXLuyu_7P4C3aJeSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070855295</pqid></control><display><type>article</type><title>volatilityforecastingpackage: A Financial Volatility Package in Mathematica</title><source>SpringerNature Journals</source><creator>Khodabaccus, Noorshanaaz ; Saib, Aslam A. E. F.</creator><creatorcontrib>Khodabaccus, Noorshanaaz ; Saib, Aslam A. E. F.</creatorcontrib><description>The relevance of financial volatility forecasting in efficient decision making regarding risk-related assets cannot be subdued. In the financial world, asset price volatility plays a pivotal role in investment decision making and portfolio setups. The prediction of these volatilities usually deal with noisy and non-stationary data bearing heteroscedastic nature. This paper introduces the volatilityforecastingpackage for financial volatility modelling, forecasting and visualization using state-of-the art algorithms. This package allows recourse to algorithms through a user friendly interface supported by the Mathematica framework, that provides easy access to models for high and low frequency data, while accessibly generating forecasts, estimating errors and generating plots. The package also allows analysis of user data and based on the results, a set of models appropriate for the data is suggested for eventual use.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-023-10406-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Assets ; Behavioral/Experimental Economics ; Computer Appl. in Social and Behavioral Sciences ; Decision making ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Forecasting ; Investment decision ; Investments ; Machine learning ; Math Applications in Computer Science ; Operations Research/Decision Theory ; Software ; Stochastic models ; Time series ; Visualization ; Volatility</subject><ispartof>Computational economics, 2024-06, Vol.63 (6), p.2307-2324</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-e8d89633f0d9b70da3051ad899b7682cb70f1db49683004a735d166b31ca4a093</cites><orcidid>0000-0001-7920-8645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-023-10406-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-023-10406-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Khodabaccus, Noorshanaaz</creatorcontrib><creatorcontrib>Saib, Aslam A. E. F.</creatorcontrib><title>volatilityforecastingpackage: A Financial Volatility Package in Mathematica</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>The relevance of financial volatility forecasting in efficient decision making regarding risk-related assets cannot be subdued. In the financial world, asset price volatility plays a pivotal role in investment decision making and portfolio setups. The prediction of these volatilities usually deal with noisy and non-stationary data bearing heteroscedastic nature. This paper introduces the volatilityforecastingpackage for financial volatility modelling, forecasting and visualization using state-of-the art algorithms. This package allows recourse to algorithms through a user friendly interface supported by the Mathematica framework, that provides easy access to models for high and low frequency data, while accessibly generating forecasts, estimating errors and generating plots. The package also allows analysis of user data and based on the results, a set of models appropriate for the data is suggested for eventual use.</description><subject>Algorithms</subject><subject>Assets</subject><subject>Behavioral/Experimental Economics</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Decision making</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Forecasting</subject><subject>Investment decision</subject><subject>Investments</subject><subject>Machine learning</subject><subject>Math Applications in Computer Science</subject><subject>Operations Research/Decision Theory</subject><subject>Software</subject><subject>Stochastic models</subject><subject>Time series</subject><subject>Visualization</subject><subject>Volatility</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOdmzHbFVFAVEEAyA2y3Gc4pImxU6R-u8xBNGN6XT3vnd3egidEjgnAPIiEhAkx0AZJpCDwHQPjQiXFCsl8300AkUllqDUITqKcQkAnFA6QnefXWN63_h-W3fBWRN73y7Wxr6bhbvMJtnMt6a13jTZyx-ZPQ565tvs3vRvbpUEa47RQW2a6E5-6xg9z66epjd4_nB9O53MsWUCeuyKqlCCsRoqVUqoDEu_mDRLnSioTbOaVGWuRMEAciMZr4gQJSPW5AYUG6OzYe86dB8bF3u97DahTSc1AwkF51TxRNGBsqGLMbhar4NfmbDVBPR3aHoITafQ9E9omiZTNpic7Vofd5ZCFZxwgNeEsAGJSWwXLuyu_7P4C3aJeSI</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Khodabaccus, Noorshanaaz</creator><creator>Saib, Aslam A. E. F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-7920-8645</orcidid></search><sort><creationdate>20240601</creationdate><title>volatilityforecastingpackage: A Financial Volatility Package in Mathematica</title><author>Khodabaccus, Noorshanaaz ; Saib, Aslam A. E. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e8d89633f0d9b70da3051ad899b7682cb70f1db49683004a735d166b31ca4a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Assets</topic><topic>Behavioral/Experimental Economics</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Decision making</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Forecasting</topic><topic>Investment decision</topic><topic>Investments</topic><topic>Machine learning</topic><topic>Math Applications in Computer Science</topic><topic>Operations Research/Decision Theory</topic><topic>Software</topic><topic>Stochastic models</topic><topic>Time series</topic><topic>Visualization</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodabaccus, Noorshanaaz</creatorcontrib><creatorcontrib>Saib, Aslam A. E. F.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodabaccus, Noorshanaaz</au><au>Saib, Aslam A. E. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>volatilityforecastingpackage: A Financial Volatility Package in Mathematica</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>63</volume><issue>6</issue><spage>2307</spage><epage>2324</epage><pages>2307-2324</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>The relevance of financial volatility forecasting in efficient decision making regarding risk-related assets cannot be subdued. In the financial world, asset price volatility plays a pivotal role in investment decision making and portfolio setups. The prediction of these volatilities usually deal with noisy and non-stationary data bearing heteroscedastic nature. This paper introduces the volatilityforecastingpackage for financial volatility modelling, forecasting and visualization using state-of-the art algorithms. This package allows recourse to algorithms through a user friendly interface supported by the Mathematica framework, that provides easy access to models for high and low frequency data, while accessibly generating forecasts, estimating errors and generating plots. The package also allows analysis of user data and based on the results, a set of models appropriate for the data is suggested for eventual use.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-023-10406-2</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7920-8645</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7099
ispartof Computational economics, 2024-06, Vol.63 (6), p.2307-2324
issn 0927-7099
1572-9974
language eng
recordid cdi_proquest_journals_3070855295
source SpringerNature Journals
subjects Algorithms
Assets
Behavioral/Experimental Economics
Computer Appl. in Social and Behavioral Sciences
Decision making
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Forecasting
Investment decision
Investments
Machine learning
Math Applications in Computer Science
Operations Research/Decision Theory
Software
Stochastic models
Time series
Visualization
Volatility
title volatilityforecastingpackage: A Financial Volatility Package in Mathematica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T11%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=volatilityforecastingpackage:%20A%20Financial%20Volatility%20Package%20in%20Mathematica&rft.jtitle=Computational%20economics&rft.au=Khodabaccus,%20Noorshanaaz&rft.date=2024-06-01&rft.volume=63&rft.issue=6&rft.spage=2307&rft.epage=2324&rft.pages=2307-2324&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-023-10406-2&rft_dat=%3Cproquest_cross%3E3070855295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070855295&rft_id=info:pmid/&rfr_iscdi=true