Further Development of Mathematical Models for Free-Burning Electric Arcs

A mathematical model predicting the electric arc plasma behavior in air and atmospheric pressure is developed. Modeling algorithms are reported for free-burning (rather than wall stabilized) dc-arc parameters, such as the arc radial temperature distribution T(r) , electric field E along the arc c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2024-04, Vol.52 (4), p.1433-1441
Hauptverfasser: Djakov, Boyan E., Shpanin, Leonid M., Jones, Gordon R., Spencer, Joseph W., Yan, Jiu Dun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1441
container_issue 4
container_start_page 1433
container_title IEEE transactions on plasma science
container_volume 52
creator Djakov, Boyan E.
Shpanin, Leonid M.
Jones, Gordon R.
Spencer, Joseph W.
Yan, Jiu Dun
description A mathematical model predicting the electric arc plasma behavior in air and atmospheric pressure is developed. Modeling algorithms are reported for free-burning (rather than wall stabilized) dc-arc parameters, such as the arc radial temperature distribution T(r) , electric field E along the arc column, and arc radius r_{0} (radius of the electrically conductive zone \sigma > 0 ). Such arcs may have more complex structures than wall-stabilized arcs. Examples of such arcs are electromagnetically rotated arcs, electric arc furnaces (EAFs), and lightning return stroke (LRS). By comparison with experimental data and with more precise calculations, the model was validated practically and theoretically and formed the basis for investigating the behavior of complex electromagnetically convoluted arcs in the process of interrupting direct currents.
doi_str_mv 10.1109/TPS.2024.3379842
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3070779821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10496504</ieee_id><sourcerecordid>3070779821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a5ded9b70964188e87550d3b5e5cbe28e7290ead3b778e7aa3847b9b2d37494d3</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXho4nlx-kW3R0RQEogm4rnpdmd1yS6L7WLif28JHDxN5uW9-fgRcstgxBiYh_Xb-4gDlyMhtMklPyMDZoTJjNDqnAwAjMhEzsQluYpxA8CkAj4gi_k-9F8Y6BP-YNPtWtz2tKvoyiW1dX3tXUNXXYlNpFUX6DwgZo_7sK23n3TWoO9D7ekk-HhNLirXRLw51SH5mM_W05ds-fq8mE6WmedS9ZlTJZam0GDGkuU55lopKEWhUPkCeY6aG0CXFK1T45zIpS5MwUuhpZGlGJL749xd6L73GHu76dI9aaUVoEGn7zlLLji6fOhiDFjZXahbF34tA3sAZhMwewBmT8BS5O4YqRHxn12asQIp_gAz5mZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070779821</pqid></control><display><type>article</type><title>Further Development of Mathematical Models for Free-Burning Electric Arcs</title><source>IEEE Electronic Library (IEL)</source><creator>Djakov, Boyan E. ; Shpanin, Leonid M. ; Jones, Gordon R. ; Spencer, Joseph W. ; Yan, Jiu Dun</creator><creatorcontrib>Djakov, Boyan E. ; Shpanin, Leonid M. ; Jones, Gordon R. ; Spencer, Joseph W. ; Yan, Jiu Dun</creatorcontrib><description><![CDATA[A mathematical model predicting the electric arc plasma behavior in air and atmospheric pressure is developed. Modeling algorithms are reported for free-burning (rather than wall stabilized) dc-arc parameters, such as the arc radial temperature distribution <inline-formula> <tex-math notation="LaTeX">T(r) </tex-math></inline-formula>, electric field <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula> along the arc column, and arc radius <inline-formula> <tex-math notation="LaTeX">r_{0} </tex-math></inline-formula> (radius of the electrically conductive zone <inline-formula> <tex-math notation="LaTeX">\sigma > 0 </tex-math></inline-formula>). Such arcs may have more complex structures than wall-stabilized arcs. Examples of such arcs are electromagnetically rotated arcs, electric arc furnaces (EAFs), and lightning return stroke (LRS). By comparison with experimental data and with more precise calculations, the model was validated practically and theoretically and formed the basis for investigating the behavior of complex electromagnetically convoluted arcs in the process of interrupting direct currents.]]></description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2024.3379842</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arc discharges ; arc modeling ; arc plasma devices ; Atmospheric modeling ; Conductivity ; current interruption ; Electric arc furnaces ; Electric arcs ; Electric fields ; Furnaces ; Mathematical models ; plasma control ; Plasma temperature ; Plasmas ; Return strokes (lightning) ; Stimulated emission ; Temperature distribution ; Thermal conductivity ; Wall stabilized arcs</subject><ispartof>IEEE transactions on plasma science, 2024-04, Vol.52 (4), p.1433-1441</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-a5ded9b70964188e87550d3b5e5cbe28e7290ead3b778e7aa3847b9b2d37494d3</cites><orcidid>0000-0002-3085-4678 ; 0000-0002-3732-2623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10496504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10496504$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Djakov, Boyan E.</creatorcontrib><creatorcontrib>Shpanin, Leonid M.</creatorcontrib><creatorcontrib>Jones, Gordon R.</creatorcontrib><creatorcontrib>Spencer, Joseph W.</creatorcontrib><creatorcontrib>Yan, Jiu Dun</creatorcontrib><title>Further Development of Mathematical Models for Free-Burning Electric Arcs</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description><![CDATA[A mathematical model predicting the electric arc plasma behavior in air and atmospheric pressure is developed. Modeling algorithms are reported for free-burning (rather than wall stabilized) dc-arc parameters, such as the arc radial temperature distribution <inline-formula> <tex-math notation="LaTeX">T(r) </tex-math></inline-formula>, electric field <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula> along the arc column, and arc radius <inline-formula> <tex-math notation="LaTeX">r_{0} </tex-math></inline-formula> (radius of the electrically conductive zone <inline-formula> <tex-math notation="LaTeX">\sigma > 0 </tex-math></inline-formula>). Such arcs may have more complex structures than wall-stabilized arcs. Examples of such arcs are electromagnetically rotated arcs, electric arc furnaces (EAFs), and lightning return stroke (LRS). By comparison with experimental data and with more precise calculations, the model was validated practically and theoretically and formed the basis for investigating the behavior of complex electromagnetically convoluted arcs in the process of interrupting direct currents.]]></description><subject>Algorithms</subject><subject>Arc discharges</subject><subject>arc modeling</subject><subject>arc plasma devices</subject><subject>Atmospheric modeling</subject><subject>Conductivity</subject><subject>current interruption</subject><subject>Electric arc furnaces</subject><subject>Electric arcs</subject><subject>Electric fields</subject><subject>Furnaces</subject><subject>Mathematical models</subject><subject>plasma control</subject><subject>Plasma temperature</subject><subject>Plasmas</subject><subject>Return strokes (lightning)</subject><subject>Stimulated emission</subject><subject>Temperature distribution</subject><subject>Thermal conductivity</subject><subject>Wall stabilized arcs</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiYjePXho4nlx-kW3R0RQEogm4rnpdmd1yS6L7WLif28JHDxN5uW9-fgRcstgxBiYh_Xb-4gDlyMhtMklPyMDZoTJjNDqnAwAjMhEzsQluYpxA8CkAj4gi_k-9F8Y6BP-YNPtWtz2tKvoyiW1dX3tXUNXXYlNpFUX6DwgZo_7sK23n3TWoO9D7ekk-HhNLirXRLw51SH5mM_W05ds-fq8mE6WmedS9ZlTJZam0GDGkuU55lopKEWhUPkCeY6aG0CXFK1T45zIpS5MwUuhpZGlGJL749xd6L73GHu76dI9aaUVoEGn7zlLLji6fOhiDFjZXahbF34tA3sAZhMwewBmT8BS5O4YqRHxn12asQIp_gAz5mZU</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Djakov, Boyan E.</creator><creator>Shpanin, Leonid M.</creator><creator>Jones, Gordon R.</creator><creator>Spencer, Joseph W.</creator><creator>Yan, Jiu Dun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3085-4678</orcidid><orcidid>https://orcid.org/0000-0002-3732-2623</orcidid></search><sort><creationdate>20240401</creationdate><title>Further Development of Mathematical Models for Free-Burning Electric Arcs</title><author>Djakov, Boyan E. ; Shpanin, Leonid M. ; Jones, Gordon R. ; Spencer, Joseph W. ; Yan, Jiu Dun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a5ded9b70964188e87550d3b5e5cbe28e7290ead3b778e7aa3847b9b2d37494d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Arc discharges</topic><topic>arc modeling</topic><topic>arc plasma devices</topic><topic>Atmospheric modeling</topic><topic>Conductivity</topic><topic>current interruption</topic><topic>Electric arc furnaces</topic><topic>Electric arcs</topic><topic>Electric fields</topic><topic>Furnaces</topic><topic>Mathematical models</topic><topic>plasma control</topic><topic>Plasma temperature</topic><topic>Plasmas</topic><topic>Return strokes (lightning)</topic><topic>Stimulated emission</topic><topic>Temperature distribution</topic><topic>Thermal conductivity</topic><topic>Wall stabilized arcs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djakov, Boyan E.</creatorcontrib><creatorcontrib>Shpanin, Leonid M.</creatorcontrib><creatorcontrib>Jones, Gordon R.</creatorcontrib><creatorcontrib>Spencer, Joseph W.</creatorcontrib><creatorcontrib>Yan, Jiu Dun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Djakov, Boyan E.</au><au>Shpanin, Leonid M.</au><au>Jones, Gordon R.</au><au>Spencer, Joseph W.</au><au>Yan, Jiu Dun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Further Development of Mathematical Models for Free-Burning Electric Arcs</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>52</volume><issue>4</issue><spage>1433</spage><epage>1441</epage><pages>1433-1441</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract><![CDATA[A mathematical model predicting the electric arc plasma behavior in air and atmospheric pressure is developed. Modeling algorithms are reported for free-burning (rather than wall stabilized) dc-arc parameters, such as the arc radial temperature distribution <inline-formula> <tex-math notation="LaTeX">T(r) </tex-math></inline-formula>, electric field <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula> along the arc column, and arc radius <inline-formula> <tex-math notation="LaTeX">r_{0} </tex-math></inline-formula> (radius of the electrically conductive zone <inline-formula> <tex-math notation="LaTeX">\sigma > 0 </tex-math></inline-formula>). Such arcs may have more complex structures than wall-stabilized arcs. Examples of such arcs are electromagnetically rotated arcs, electric arc furnaces (EAFs), and lightning return stroke (LRS). By comparison with experimental data and with more precise calculations, the model was validated practically and theoretically and formed the basis for investigating the behavior of complex electromagnetically convoluted arcs in the process of interrupting direct currents.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2024.3379842</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3085-4678</orcidid><orcidid>https://orcid.org/0000-0002-3732-2623</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2024-04, Vol.52 (4), p.1433-1441
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_journals_3070779821
source IEEE Electronic Library (IEL)
subjects Algorithms
Arc discharges
arc modeling
arc plasma devices
Atmospheric modeling
Conductivity
current interruption
Electric arc furnaces
Electric arcs
Electric fields
Furnaces
Mathematical models
plasma control
Plasma temperature
Plasmas
Return strokes (lightning)
Stimulated emission
Temperature distribution
Thermal conductivity
Wall stabilized arcs
title Further Development of Mathematical Models for Free-Burning Electric Arcs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Further%20Development%20of%20Mathematical%20Models%20for%20Free-Burning%20Electric%20Arcs&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Djakov,%20Boyan%20E.&rft.date=2024-04-01&rft.volume=52&rft.issue=4&rft.spage=1433&rft.epage=1441&rft.pages=1433-1441&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2024.3379842&rft_dat=%3Cproquest_RIE%3E3070779821%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070779821&rft_id=info:pmid/&rft_ieee_id=10496504&rfr_iscdi=true