Shaping a Decoupled Atmospheric Pressure Microwave Plasma With Antenna Structures, Maxwell's Equations, and Boundary Conditions

This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell's laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2024-04, Vol.52 (4), p.1218-1226
Hauptverfasser: Turdumamatov, Samat, Belda, Aljoscha, Heuermann, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1226
container_issue 4
container_start_page 1218
container_title IEEE transactions on plasma science
container_volume 52
creator Turdumamatov, Samat
Belda, Aljoscha
Heuermann, Holger
description This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell's laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential applications across various fields. Implemented in an E01 circular cavity resonator, the proposed method involves the use of an impedance and field matching device with a coaxial connector and a specially optimized monopole antenna. This setup feeds a low-loss cavity resonator, resulting in a high-energy density air plasma with a surface temperature exceeding 3500~{^{\text {o}}} C, achieved with a minimal power input of 80 W. The argon plasma, resembling the shape of a simple monopole antenna with modeled complex dielectric values, offers a more energy-efficient alternative compared to traditional, power-intensive plasma shaping methods. Simulations using a commercial electromagnetic (EM) solver validate the design's effectiveness, while experimental validation underscores the method's feasibility and practical implementation. Analyzing various parameters in an argon atmosphere, including hot S-parameters and plasma beam images, the results demonstrate the successful application of this technique, suggesting its potential in coating, furnace technology, fusion, and spectroscopy applications.
doi_str_mv 10.1109/TPS.2024.3383589
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3070779783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10494588</ieee_id><sourcerecordid>3070779783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-eb84dd81d8848972b99f880dfc187511dd7bbec769e3d6e9b900fc2018add9db3</originalsourceid><addsrcrecordid>eNpNkDtPwzAQgC0EEqWwMzBYYmAhxY6T2h5LKQ-JikotYoyc-EJTpXZqOxQm_jopZWA66e6714fQOSUDSom8Wczmg5jEyYAxwVIhD1CPSiYjyXh6iHqESBYxQdkxOvF-RQhNUhL30Pd8qZrKvGOF76CwbVODxqOwtr5ZgqsKPHPgfesAT6vC2a36ADyrlV8r_FaFJR6ZAMYoPA-uLULH-Ws8VZ9bqOsrjyebVoXKmi6pjMa3tjVauS88tkZXv4VTdFSq2sPZX-yj1_vJYvwYPb88PI1Hz1FBeRoiyEWitaBaiERIHudSlkIQXRZU8JRSrXmeQ8GHEpgegswlIWUREyqU1lLnrI8u93MbZzct-JCtbOtMtzJjhBPOJReso8ie6l713kGZNa5adxdnlGQ7zVmnOdtpzv40dy0X-5YKAP7hiUxSIdgP3Y17cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070779783</pqid></control><display><type>article</type><title>Shaping a Decoupled Atmospheric Pressure Microwave Plasma With Antenna Structures, Maxwell's Equations, and Boundary Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Turdumamatov, Samat ; Belda, Aljoscha ; Heuermann, Holger</creator><creatorcontrib>Turdumamatov, Samat ; Belda, Aljoscha ; Heuermann, Holger</creatorcontrib><description>This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell's laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential applications across various fields. Implemented in an E01 circular cavity resonator, the proposed method involves the use of an impedance and field matching device with a coaxial connector and a specially optimized monopole antenna. This setup feeds a low-loss cavity resonator, resulting in a high-energy density air plasma with a surface temperature exceeding &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;3500~{^{\text {o}}} &lt;/tex-math&gt;&lt;/inline-formula&gt;C, achieved with a minimal power input of 80 W. The argon plasma, resembling the shape of a simple monopole antenna with modeled complex dielectric values, offers a more energy-efficient alternative compared to traditional, power-intensive plasma shaping methods. Simulations using a commercial electromagnetic (EM) solver validate the design's effectiveness, while experimental validation underscores the method's feasibility and practical implementation. Analyzing various parameters in an argon atmosphere, including hot S-parameters and plasma beam images, the results demonstrate the successful application of this technique, suggesting its potential in coating, furnace technology, fusion, and spectroscopy applications.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2024.3383589</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D printing ; Air plasma ; Alternative energy sources ; Antennas ; Argon ; Argon plasma ; Atmospheric modeling ; Boundary conditions ; Cavity resonators ; Electric fields ; Energy efficiency ; furnace ; fusion ; hot S-parameter ; Ignition ; Impedance matching ; Maxwell's equations ; Microwave antennas ; Microwave plasmas ; mode converter ; Monopole antennas ; Parameters ; Plasma ; plasma antenna ; plasma forming ; plasma modeling ; plasma shaping ; plasma treatment ; Plasmas ; Power management ; resonant cavity ; spectroscopy ; surface cleaning ; surface coating ; Surface temperature ; welding</subject><ispartof>IEEE transactions on plasma science, 2024-04, Vol.52 (4), p.1218-1226</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-eb84dd81d8848972b99f880dfc187511dd7bbec769e3d6e9b900fc2018add9db3</cites><orcidid>0000-0002-9241-3974 ; 0000-0002-7718-7745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10494588$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10494588$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Turdumamatov, Samat</creatorcontrib><creatorcontrib>Belda, Aljoscha</creatorcontrib><creatorcontrib>Heuermann, Holger</creatorcontrib><title>Shaping a Decoupled Atmospheric Pressure Microwave Plasma With Antenna Structures, Maxwell's Equations, and Boundary Conditions</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell's laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential applications across various fields. Implemented in an E01 circular cavity resonator, the proposed method involves the use of an impedance and field matching device with a coaxial connector and a specially optimized monopole antenna. This setup feeds a low-loss cavity resonator, resulting in a high-energy density air plasma with a surface temperature exceeding &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;3500~{^{\text {o}}} &lt;/tex-math&gt;&lt;/inline-formula&gt;C, achieved with a minimal power input of 80 W. The argon plasma, resembling the shape of a simple monopole antenna with modeled complex dielectric values, offers a more energy-efficient alternative compared to traditional, power-intensive plasma shaping methods. Simulations using a commercial electromagnetic (EM) solver validate the design's effectiveness, while experimental validation underscores the method's feasibility and practical implementation. Analyzing various parameters in an argon atmosphere, including hot S-parameters and plasma beam images, the results demonstrate the successful application of this technique, suggesting its potential in coating, furnace technology, fusion, and spectroscopy applications.</description><subject>3-D printing</subject><subject>Air plasma</subject><subject>Alternative energy sources</subject><subject>Antennas</subject><subject>Argon</subject><subject>Argon plasma</subject><subject>Atmospheric modeling</subject><subject>Boundary conditions</subject><subject>Cavity resonators</subject><subject>Electric fields</subject><subject>Energy efficiency</subject><subject>furnace</subject><subject>fusion</subject><subject>hot S-parameter</subject><subject>Ignition</subject><subject>Impedance matching</subject><subject>Maxwell's equations</subject><subject>Microwave antennas</subject><subject>Microwave plasmas</subject><subject>mode converter</subject><subject>Monopole antennas</subject><subject>Parameters</subject><subject>Plasma</subject><subject>plasma antenna</subject><subject>plasma forming</subject><subject>plasma modeling</subject><subject>plasma shaping</subject><subject>plasma treatment</subject><subject>Plasmas</subject><subject>Power management</subject><subject>resonant cavity</subject><subject>spectroscopy</subject><subject>surface cleaning</subject><subject>surface coating</subject><subject>Surface temperature</subject><subject>welding</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAQgC0EEqWwMzBYYmAhxY6T2h5LKQ-JikotYoyc-EJTpXZqOxQm_jopZWA66e6714fQOSUDSom8Wczmg5jEyYAxwVIhD1CPSiYjyXh6iHqESBYxQdkxOvF-RQhNUhL30Pd8qZrKvGOF76CwbVODxqOwtr5ZgqsKPHPgfesAT6vC2a36ADyrlV8r_FaFJR6ZAMYoPA-uLULH-Ws8VZ9bqOsrjyebVoXKmi6pjMa3tjVauS88tkZXv4VTdFSq2sPZX-yj1_vJYvwYPb88PI1Hz1FBeRoiyEWitaBaiERIHudSlkIQXRZU8JRSrXmeQ8GHEpgegswlIWUREyqU1lLnrI8u93MbZzct-JCtbOtMtzJjhBPOJReso8ie6l713kGZNa5adxdnlGQ7zVmnOdtpzv40dy0X-5YKAP7hiUxSIdgP3Y17cw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Turdumamatov, Samat</creator><creator>Belda, Aljoscha</creator><creator>Heuermann, Holger</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9241-3974</orcidid><orcidid>https://orcid.org/0000-0002-7718-7745</orcidid></search><sort><creationdate>20240401</creationdate><title>Shaping a Decoupled Atmospheric Pressure Microwave Plasma With Antenna Structures, Maxwell's Equations, and Boundary Conditions</title><author>Turdumamatov, Samat ; Belda, Aljoscha ; Heuermann, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-eb84dd81d8848972b99f880dfc187511dd7bbec769e3d6e9b900fc2018add9db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printing</topic><topic>Air plasma</topic><topic>Alternative energy sources</topic><topic>Antennas</topic><topic>Argon</topic><topic>Argon plasma</topic><topic>Atmospheric modeling</topic><topic>Boundary conditions</topic><topic>Cavity resonators</topic><topic>Electric fields</topic><topic>Energy efficiency</topic><topic>furnace</topic><topic>fusion</topic><topic>hot S-parameter</topic><topic>Ignition</topic><topic>Impedance matching</topic><topic>Maxwell's equations</topic><topic>Microwave antennas</topic><topic>Microwave plasmas</topic><topic>mode converter</topic><topic>Monopole antennas</topic><topic>Parameters</topic><topic>Plasma</topic><topic>plasma antenna</topic><topic>plasma forming</topic><topic>plasma modeling</topic><topic>plasma shaping</topic><topic>plasma treatment</topic><topic>Plasmas</topic><topic>Power management</topic><topic>resonant cavity</topic><topic>spectroscopy</topic><topic>surface cleaning</topic><topic>surface coating</topic><topic>Surface temperature</topic><topic>welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turdumamatov, Samat</creatorcontrib><creatorcontrib>Belda, Aljoscha</creatorcontrib><creatorcontrib>Heuermann, Holger</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Turdumamatov, Samat</au><au>Belda, Aljoscha</au><au>Heuermann, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shaping a Decoupled Atmospheric Pressure Microwave Plasma With Antenna Structures, Maxwell's Equations, and Boundary Conditions</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>52</volume><issue>4</issue><spage>1218</spage><epage>1226</epage><pages>1218-1226</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell's laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential applications across various fields. Implemented in an E01 circular cavity resonator, the proposed method involves the use of an impedance and field matching device with a coaxial connector and a specially optimized monopole antenna. This setup feeds a low-loss cavity resonator, resulting in a high-energy density air plasma with a surface temperature exceeding &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;3500~{^{\text {o}}} &lt;/tex-math&gt;&lt;/inline-formula&gt;C, achieved with a minimal power input of 80 W. The argon plasma, resembling the shape of a simple monopole antenna with modeled complex dielectric values, offers a more energy-efficient alternative compared to traditional, power-intensive plasma shaping methods. Simulations using a commercial electromagnetic (EM) solver validate the design's effectiveness, while experimental validation underscores the method's feasibility and practical implementation. Analyzing various parameters in an argon atmosphere, including hot S-parameters and plasma beam images, the results demonstrate the successful application of this technique, suggesting its potential in coating, furnace technology, fusion, and spectroscopy applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2024.3383589</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9241-3974</orcidid><orcidid>https://orcid.org/0000-0002-7718-7745</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2024-04, Vol.52 (4), p.1218-1226
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_journals_3070779783
source IEEE Electronic Library (IEL)
subjects 3-D printing
Air plasma
Alternative energy sources
Antennas
Argon
Argon plasma
Atmospheric modeling
Boundary conditions
Cavity resonators
Electric fields
Energy efficiency
furnace
fusion
hot S-parameter
Ignition
Impedance matching
Maxwell's equations
Microwave antennas
Microwave plasmas
mode converter
Monopole antennas
Parameters
Plasma
plasma antenna
plasma forming
plasma modeling
plasma shaping
plasma treatment
Plasmas
Power management
resonant cavity
spectroscopy
surface cleaning
surface coating
Surface temperature
welding
title Shaping a Decoupled Atmospheric Pressure Microwave Plasma With Antenna Structures, Maxwell's Equations, and Boundary Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shaping%20a%20Decoupled%20Atmospheric%20Pressure%20Microwave%20Plasma%20With%20Antenna%20Structures,%20Maxwell's%20Equations,%20and%20Boundary%20Conditions&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Turdumamatov,%20Samat&rft.date=2024-04-01&rft.volume=52&rft.issue=4&rft.spage=1218&rft.epage=1226&rft.pages=1218-1226&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2024.3383589&rft_dat=%3Cproquest_RIE%3E3070779783%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070779783&rft_id=info:pmid/&rft_ieee_id=10494588&rfr_iscdi=true