Shaping a Decoupled Atmospheric Pressure Microwave Plasma With Antenna Structures, Maxwell's Equations, and Boundary Conditions
This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell's laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2024-04, Vol.52 (4), p.1218-1226 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1226 |
---|---|
container_issue | 4 |
container_start_page | 1218 |
container_title | IEEE transactions on plasma science |
container_volume | 52 |
creator | Turdumamatov, Samat Belda, Aljoscha Heuermann, Holger |
description | This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell's laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential applications across various fields. Implemented in an E01 circular cavity resonator, the proposed method involves the use of an impedance and field matching device with a coaxial connector and a specially optimized monopole antenna. This setup feeds a low-loss cavity resonator, resulting in a high-energy density air plasma with a surface temperature exceeding 3500~{^{\text {o}}} C, achieved with a minimal power input of 80 W. The argon plasma, resembling the shape of a simple monopole antenna with modeled complex dielectric values, offers a more energy-efficient alternative compared to traditional, power-intensive plasma shaping methods. Simulations using a commercial electromagnetic (EM) solver validate the design's effectiveness, while experimental validation underscores the method's feasibility and practical implementation. Analyzing various parameters in an argon atmosphere, including hot S-parameters and plasma beam images, the results demonstrate the successful application of this technique, suggesting its potential in coating, furnace technology, fusion, and spectroscopy applications. |
doi_str_mv | 10.1109/TPS.2024.3383589 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3070779783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10494588</ieee_id><sourcerecordid>3070779783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-eb84dd81d8848972b99f880dfc187511dd7bbec769e3d6e9b900fc2018add9db3</originalsourceid><addsrcrecordid>eNpNkDtPwzAQgC0EEqWwMzBYYmAhxY6T2h5LKQ-JikotYoyc-EJTpXZqOxQm_jopZWA66e6714fQOSUDSom8Wczmg5jEyYAxwVIhD1CPSiYjyXh6iHqESBYxQdkxOvF-RQhNUhL30Pd8qZrKvGOF76CwbVODxqOwtr5ZgqsKPHPgfesAT6vC2a36ADyrlV8r_FaFJR6ZAMYoPA-uLULH-Ws8VZ9bqOsrjyebVoXKmi6pjMa3tjVauS88tkZXv4VTdFSq2sPZX-yj1_vJYvwYPb88PI1Hz1FBeRoiyEWitaBaiERIHudSlkIQXRZU8JRSrXmeQ8GHEpgegswlIWUREyqU1lLnrI8u93MbZzct-JCtbOtMtzJjhBPOJReso8ie6l713kGZNa5adxdnlGQ7zVmnOdtpzv40dy0X-5YKAP7hiUxSIdgP3Y17cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070779783</pqid></control><display><type>article</type><title>Shaping a Decoupled Atmospheric Pressure Microwave Plasma With Antenna Structures, Maxwell's Equations, and Boundary Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Turdumamatov, Samat ; Belda, Aljoscha ; Heuermann, Holger</creator><creatorcontrib>Turdumamatov, Samat ; Belda, Aljoscha ; Heuermann, Holger</creatorcontrib><description>This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell's laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential applications across various fields. Implemented in an E01 circular cavity resonator, the proposed method involves the use of an impedance and field matching device with a coaxial connector and a specially optimized monopole antenna. This setup feeds a low-loss cavity resonator, resulting in a high-energy density air plasma with a surface temperature exceeding <inline-formula> <tex-math notation="LaTeX">3500~{^{\text {o}}} </tex-math></inline-formula>C, achieved with a minimal power input of 80 W. The argon plasma, resembling the shape of a simple monopole antenna with modeled complex dielectric values, offers a more energy-efficient alternative compared to traditional, power-intensive plasma shaping methods. Simulations using a commercial electromagnetic (EM) solver validate the design's effectiveness, while experimental validation underscores the method's feasibility and practical implementation. Analyzing various parameters in an argon atmosphere, including hot S-parameters and plasma beam images, the results demonstrate the successful application of this technique, suggesting its potential in coating, furnace technology, fusion, and spectroscopy applications.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2024.3383589</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D printing ; Air plasma ; Alternative energy sources ; Antennas ; Argon ; Argon plasma ; Atmospheric modeling ; Boundary conditions ; Cavity resonators ; Electric fields ; Energy efficiency ; furnace ; fusion ; hot S-parameter ; Ignition ; Impedance matching ; Maxwell's equations ; Microwave antennas ; Microwave plasmas ; mode converter ; Monopole antennas ; Parameters ; Plasma ; plasma antenna ; plasma forming ; plasma modeling ; plasma shaping ; plasma treatment ; Plasmas ; Power management ; resonant cavity ; spectroscopy ; surface cleaning ; surface coating ; Surface temperature ; welding</subject><ispartof>IEEE transactions on plasma science, 2024-04, Vol.52 (4), p.1218-1226</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-eb84dd81d8848972b99f880dfc187511dd7bbec769e3d6e9b900fc2018add9db3</cites><orcidid>0000-0002-9241-3974 ; 0000-0002-7718-7745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10494588$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10494588$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Turdumamatov, Samat</creatorcontrib><creatorcontrib>Belda, Aljoscha</creatorcontrib><creatorcontrib>Heuermann, Holger</creatorcontrib><title>Shaping a Decoupled Atmospheric Pressure Microwave Plasma With Antenna Structures, Maxwell's Equations, and Boundary Conditions</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell's laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential applications across various fields. Implemented in an E01 circular cavity resonator, the proposed method involves the use of an impedance and field matching device with a coaxial connector and a specially optimized monopole antenna. This setup feeds a low-loss cavity resonator, resulting in a high-energy density air plasma with a surface temperature exceeding <inline-formula> <tex-math notation="LaTeX">3500~{^{\text {o}}} </tex-math></inline-formula>C, achieved with a minimal power input of 80 W. The argon plasma, resembling the shape of a simple monopole antenna with modeled complex dielectric values, offers a more energy-efficient alternative compared to traditional, power-intensive plasma shaping methods. Simulations using a commercial electromagnetic (EM) solver validate the design's effectiveness, while experimental validation underscores the method's feasibility and practical implementation. Analyzing various parameters in an argon atmosphere, including hot S-parameters and plasma beam images, the results demonstrate the successful application of this technique, suggesting its potential in coating, furnace technology, fusion, and spectroscopy applications.</description><subject>3-D printing</subject><subject>Air plasma</subject><subject>Alternative energy sources</subject><subject>Antennas</subject><subject>Argon</subject><subject>Argon plasma</subject><subject>Atmospheric modeling</subject><subject>Boundary conditions</subject><subject>Cavity resonators</subject><subject>Electric fields</subject><subject>Energy efficiency</subject><subject>furnace</subject><subject>fusion</subject><subject>hot S-parameter</subject><subject>Ignition</subject><subject>Impedance matching</subject><subject>Maxwell's equations</subject><subject>Microwave antennas</subject><subject>Microwave plasmas</subject><subject>mode converter</subject><subject>Monopole antennas</subject><subject>Parameters</subject><subject>Plasma</subject><subject>plasma antenna</subject><subject>plasma forming</subject><subject>plasma modeling</subject><subject>plasma shaping</subject><subject>plasma treatment</subject><subject>Plasmas</subject><subject>Power management</subject><subject>resonant cavity</subject><subject>spectroscopy</subject><subject>surface cleaning</subject><subject>surface coating</subject><subject>Surface temperature</subject><subject>welding</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAQgC0EEqWwMzBYYmAhxY6T2h5LKQ-JikotYoyc-EJTpXZqOxQm_jopZWA66e6714fQOSUDSom8Wczmg5jEyYAxwVIhD1CPSiYjyXh6iHqESBYxQdkxOvF-RQhNUhL30Pd8qZrKvGOF76CwbVODxqOwtr5ZgqsKPHPgfesAT6vC2a36ADyrlV8r_FaFJR6ZAMYoPA-uLULH-Ws8VZ9bqOsrjyebVoXKmi6pjMa3tjVauS88tkZXv4VTdFSq2sPZX-yj1_vJYvwYPb88PI1Hz1FBeRoiyEWitaBaiERIHudSlkIQXRZU8JRSrXmeQ8GHEpgegswlIWUREyqU1lLnrI8u93MbZzct-JCtbOtMtzJjhBPOJReso8ie6l713kGZNa5adxdnlGQ7zVmnOdtpzv40dy0X-5YKAP7hiUxSIdgP3Y17cw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Turdumamatov, Samat</creator><creator>Belda, Aljoscha</creator><creator>Heuermann, Holger</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9241-3974</orcidid><orcidid>https://orcid.org/0000-0002-7718-7745</orcidid></search><sort><creationdate>20240401</creationdate><title>Shaping a Decoupled Atmospheric Pressure Microwave Plasma With Antenna Structures, Maxwell's Equations, and Boundary Conditions</title><author>Turdumamatov, Samat ; Belda, Aljoscha ; Heuermann, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-eb84dd81d8848972b99f880dfc187511dd7bbec769e3d6e9b900fc2018add9db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printing</topic><topic>Air plasma</topic><topic>Alternative energy sources</topic><topic>Antennas</topic><topic>Argon</topic><topic>Argon plasma</topic><topic>Atmospheric modeling</topic><topic>Boundary conditions</topic><topic>Cavity resonators</topic><topic>Electric fields</topic><topic>Energy efficiency</topic><topic>furnace</topic><topic>fusion</topic><topic>hot S-parameter</topic><topic>Ignition</topic><topic>Impedance matching</topic><topic>Maxwell's equations</topic><topic>Microwave antennas</topic><topic>Microwave plasmas</topic><topic>mode converter</topic><topic>Monopole antennas</topic><topic>Parameters</topic><topic>Plasma</topic><topic>plasma antenna</topic><topic>plasma forming</topic><topic>plasma modeling</topic><topic>plasma shaping</topic><topic>plasma treatment</topic><topic>Plasmas</topic><topic>Power management</topic><topic>resonant cavity</topic><topic>spectroscopy</topic><topic>surface cleaning</topic><topic>surface coating</topic><topic>Surface temperature</topic><topic>welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turdumamatov, Samat</creatorcontrib><creatorcontrib>Belda, Aljoscha</creatorcontrib><creatorcontrib>Heuermann, Holger</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Turdumamatov, Samat</au><au>Belda, Aljoscha</au><au>Heuermann, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shaping a Decoupled Atmospheric Pressure Microwave Plasma With Antenna Structures, Maxwell's Equations, and Boundary Conditions</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>52</volume><issue>4</issue><spage>1218</spage><epage>1226</epage><pages>1218-1226</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell's laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential applications across various fields. Implemented in an E01 circular cavity resonator, the proposed method involves the use of an impedance and field matching device with a coaxial connector and a specially optimized monopole antenna. This setup feeds a low-loss cavity resonator, resulting in a high-energy density air plasma with a surface temperature exceeding <inline-formula> <tex-math notation="LaTeX">3500~{^{\text {o}}} </tex-math></inline-formula>C, achieved with a minimal power input of 80 W. The argon plasma, resembling the shape of a simple monopole antenna with modeled complex dielectric values, offers a more energy-efficient alternative compared to traditional, power-intensive plasma shaping methods. Simulations using a commercial electromagnetic (EM) solver validate the design's effectiveness, while experimental validation underscores the method's feasibility and practical implementation. Analyzing various parameters in an argon atmosphere, including hot S-parameters and plasma beam images, the results demonstrate the successful application of this technique, suggesting its potential in coating, furnace technology, fusion, and spectroscopy applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2024.3383589</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9241-3974</orcidid><orcidid>https://orcid.org/0000-0002-7718-7745</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2024-04, Vol.52 (4), p.1218-1226 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_journals_3070779783 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D printing Air plasma Alternative energy sources Antennas Argon Argon plasma Atmospheric modeling Boundary conditions Cavity resonators Electric fields Energy efficiency furnace fusion hot S-parameter Ignition Impedance matching Maxwell's equations Microwave antennas Microwave plasmas mode converter Monopole antennas Parameters Plasma plasma antenna plasma forming plasma modeling plasma shaping plasma treatment Plasmas Power management resonant cavity spectroscopy surface cleaning surface coating Surface temperature welding |
title | Shaping a Decoupled Atmospheric Pressure Microwave Plasma With Antenna Structures, Maxwell's Equations, and Boundary Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shaping%20a%20Decoupled%20Atmospheric%20Pressure%20Microwave%20Plasma%20With%20Antenna%20Structures,%20Maxwell's%20Equations,%20and%20Boundary%20Conditions&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Turdumamatov,%20Samat&rft.date=2024-04-01&rft.volume=52&rft.issue=4&rft.spage=1218&rft.epage=1226&rft.pages=1218-1226&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2024.3383589&rft_dat=%3Cproquest_RIE%3E3070779783%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070779783&rft_id=info:pmid/&rft_ieee_id=10494588&rfr_iscdi=true |