Generalized Welsch penalty for edge-aware image decomposition

Edge-aware image decomposition is an essential topic in the field of multimedia signal processing. In this paper, we propose a novel non-convex penalty function, which we name the generalized Welsch function. We show that the proposed penalty function is more than a generalization of most existing p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia systems 2024-08, Vol.30 (4), Article 186
Hauptverfasser: Yang, Yang, Ji, Shunli, Wang, Xinyu, Zeng, Lanling, Zhan, Yongzhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Multimedia systems
container_volume 30
creator Yang, Yang
Ji, Shunli
Wang, Xinyu
Zeng, Lanling
Zhan, Yongzhao
description Edge-aware image decomposition is an essential topic in the field of multimedia signal processing. In this paper, we propose a novel non-convex penalty function, which we name the generalized Welsch function. We show that the proposed penalty function is more than a generalization of most existing penalty functions for edge-aware regularization, thus, it better facilitates edge-awareness. We embed the proposed penalty function into a novel optimization model for edge-aware image decomposition. To solve the optimization model with non-convex penalty function, we propose an efficient algorithm based on the additive quadratic minimization and Fourier domain optimization. We have experimented with the proposed method in a variety of tasks, including image smoothing, detail enhancement, HDR tone mapping, and JPEG compression artifact removal. Experiment results show that our method outperforms the state-of-the-art image decomposition methods. Furthermore, our method is highly efficient, it is able to render real-time processing of 720P color images on a modern GPU.
doi_str_mv 10.1007/s00530-024-01382-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3070717048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070717048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7b839da256aa6743fc5384560941ca55195ed895c168d9aecefff0d900e84a753</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcF19GXryZZuJBBR2HAjeIyxPRl7NBpa9JBxl9vtYI7V3dz7uVyCDlncMkA9FUGUAIocEmBCcMpHJAZk4JTZgw_JDOwklNpS35MTnLeADBdCpiR6yW2mHxTf2JVvGCTw1vRY-ubYV_ELhVYrZH6D5-wqLd-jUWFodv2Xa6HumtPyVH0Tcaz35yT57vbp8U9XT0uHxY3Kxo4wED1qxG28lyV3pdaihiUMFKV4ykWvFLMKqyMVYGVprIeA8YYobIAaKTXSszJxbTbp-59h3lwm26XxpfZCdCgmQZpRopPVEhdzgmj69N4Ou0dA_etyU2a3KjJ_WhyMJbEVMoj3K4x_U3_0_oCLsdpqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070717048</pqid></control><display><type>article</type><title>Generalized Welsch penalty for edge-aware image decomposition</title><source>SpringerNature Journals</source><creator>Yang, Yang ; Ji, Shunli ; Wang, Xinyu ; Zeng, Lanling ; Zhan, Yongzhao</creator><creatorcontrib>Yang, Yang ; Ji, Shunli ; Wang, Xinyu ; Zeng, Lanling ; Zhan, Yongzhao</creatorcontrib><description>Edge-aware image decomposition is an essential topic in the field of multimedia signal processing. In this paper, we propose a novel non-convex penalty function, which we name the generalized Welsch function. We show that the proposed penalty function is more than a generalization of most existing penalty functions for edge-aware regularization, thus, it better facilitates edge-awareness. We embed the proposed penalty function into a novel optimization model for edge-aware image decomposition. To solve the optimization model with non-convex penalty function, we propose an efficient algorithm based on the additive quadratic minimization and Fourier domain optimization. We have experimented with the proposed method in a variety of tasks, including image smoothing, detail enhancement, HDR tone mapping, and JPEG compression artifact removal. Experiment results show that our method outperforms the state-of-the-art image decomposition methods. Furthermore, our method is highly efficient, it is able to render real-time processing of 720P color images on a modern GPU.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-024-01382-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Color imagery ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Cryptology ; Data Storage Representation ; Decomposition ; Edge detection ; Image compression ; Image enhancement ; Multimedia ; Multimedia Information Systems ; Operating Systems ; Optimization ; Optimization models ; Penalty function ; Real time ; Regular Paper ; Regularization</subject><ispartof>Multimedia systems, 2024-08, Vol.30 (4), Article 186</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7b839da256aa6743fc5384560941ca55195ed895c168d9aecefff0d900e84a753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-024-01382-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-024-01382-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Ji, Shunli</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Zeng, Lanling</creatorcontrib><creatorcontrib>Zhan, Yongzhao</creatorcontrib><title>Generalized Welsch penalty for edge-aware image decomposition</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Edge-aware image decomposition is an essential topic in the field of multimedia signal processing. In this paper, we propose a novel non-convex penalty function, which we name the generalized Welsch function. We show that the proposed penalty function is more than a generalization of most existing penalty functions for edge-aware regularization, thus, it better facilitates edge-awareness. We embed the proposed penalty function into a novel optimization model for edge-aware image decomposition. To solve the optimization model with non-convex penalty function, we propose an efficient algorithm based on the additive quadratic minimization and Fourier domain optimization. We have experimented with the proposed method in a variety of tasks, including image smoothing, detail enhancement, HDR tone mapping, and JPEG compression artifact removal. Experiment results show that our method outperforms the state-of-the-art image decomposition methods. Furthermore, our method is highly efficient, it is able to render real-time processing of 720P color images on a modern GPU.</description><subject>Algorithms</subject><subject>Color imagery</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Decomposition</subject><subject>Edge detection</subject><subject>Image compression</subject><subject>Image enhancement</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Operating Systems</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Penalty function</subject><subject>Real time</subject><subject>Regular Paper</subject><subject>Regularization</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcF19GXryZZuJBBR2HAjeIyxPRl7NBpa9JBxl9vtYI7V3dz7uVyCDlncMkA9FUGUAIocEmBCcMpHJAZk4JTZgw_JDOwklNpS35MTnLeADBdCpiR6yW2mHxTf2JVvGCTw1vRY-ubYV_ELhVYrZH6D5-wqLd-jUWFodv2Xa6HumtPyVH0Tcaz35yT57vbp8U9XT0uHxY3Kxo4wED1qxG28lyV3pdaihiUMFKV4ykWvFLMKqyMVYGVprIeA8YYobIAaKTXSszJxbTbp-59h3lwm26XxpfZCdCgmQZpRopPVEhdzgmj69N4Ou0dA_etyU2a3KjJ_WhyMJbEVMoj3K4x_U3_0_oCLsdpqw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Yang, Yang</creator><creator>Ji, Shunli</creator><creator>Wang, Xinyu</creator><creator>Zeng, Lanling</creator><creator>Zhan, Yongzhao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Generalized Welsch penalty for edge-aware image decomposition</title><author>Yang, Yang ; Ji, Shunli ; Wang, Xinyu ; Zeng, Lanling ; Zhan, Yongzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7b839da256aa6743fc5384560941ca55195ed895c168d9aecefff0d900e84a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Color imagery</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Decomposition</topic><topic>Edge detection</topic><topic>Image compression</topic><topic>Image enhancement</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Operating Systems</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Penalty function</topic><topic>Real time</topic><topic>Regular Paper</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Ji, Shunli</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Zeng, Lanling</creatorcontrib><creatorcontrib>Zhan, Yongzhao</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yang</au><au>Ji, Shunli</au><au>Wang, Xinyu</au><au>Zeng, Lanling</au><au>Zhan, Yongzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Welsch penalty for edge-aware image decomposition</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>30</volume><issue>4</issue><artnum>186</artnum><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Edge-aware image decomposition is an essential topic in the field of multimedia signal processing. In this paper, we propose a novel non-convex penalty function, which we name the generalized Welsch function. We show that the proposed penalty function is more than a generalization of most existing penalty functions for edge-aware regularization, thus, it better facilitates edge-awareness. We embed the proposed penalty function into a novel optimization model for edge-aware image decomposition. To solve the optimization model with non-convex penalty function, we propose an efficient algorithm based on the additive quadratic minimization and Fourier domain optimization. We have experimented with the proposed method in a variety of tasks, including image smoothing, detail enhancement, HDR tone mapping, and JPEG compression artifact removal. Experiment results show that our method outperforms the state-of-the-art image decomposition methods. Furthermore, our method is highly efficient, it is able to render real-time processing of 720P color images on a modern GPU.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-024-01382-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 0942-4962
ispartof Multimedia systems, 2024-08, Vol.30 (4), Article 186
issn 0942-4962
1432-1882
language eng
recordid cdi_proquest_journals_3070717048
source SpringerNature Journals
subjects Algorithms
Color imagery
Computer Communication Networks
Computer Graphics
Computer Science
Cryptology
Data Storage Representation
Decomposition
Edge detection
Image compression
Image enhancement
Multimedia
Multimedia Information Systems
Operating Systems
Optimization
Optimization models
Penalty function
Real time
Regular Paper
Regularization
title Generalized Welsch penalty for edge-aware image decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Welsch%20penalty%20for%20edge-aware%20image%20decomposition&rft.jtitle=Multimedia%20systems&rft.au=Yang,%20Yang&rft.date=2024-08-01&rft.volume=30&rft.issue=4&rft.artnum=186&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-024-01382-0&rft_dat=%3Cproquest_cross%3E3070717048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070717048&rft_id=info:pmid/&rfr_iscdi=true