Weakly Supervised Training of Universal Visual Concepts for Multi-domain Semantic Segmentation

Deep supervised models have an unprecedented capacity to absorb large quantities of training data. Hence, training on multiple datasets becomes a method of choice towards strong generalization in usual scenes and graceful performance degradation in edge cases. Unfortunately, popular datasets often h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2024-07, Vol.132 (7), p.2450-2472
Hauptverfasser: Bevandić, Petra, Oršić, Marin, Šarić, Josip, Grubišić, Ivan, Šegvić, Siniša
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!