Second-Order Decoupled Linear Energy-Law Preserving gPAV Numerical Schemes for Two-Phase Flows in Superposed Free Flow and Porous Media
We propose second-order numerical methods based on the generalized positive auxiliary variable (gPAV) framework for solving the Cahn–Hilliard–Navier–Stokes–Darcy model in superposed free flow and porous media. In the gPAV-reformulated system, we introduce an auxiliary variable according to the modif...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2024-08, Vol.100 (2), p.36, Article 36 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 36 |
container_title | Journal of scientific computing |
container_volume | 100 |
creator | Gao, Yali Han, Daozhi |
description | We propose second-order numerical methods based on the generalized positive auxiliary variable (gPAV) framework for solving the Cahn–Hilliard–Navier–Stokes–Darcy model in superposed free flow and porous media. In the gPAV-reformulated system, we introduce an auxiliary variable according to the modified energy law and take account into the interface conditions between the two subdomains. By implicit-explicit temporal discretization, we develop fully decoupled linear gPAV-CNLF and gPAV-BDF2 numerical methods effected with the Galerkin finite element method. The fully discrete schemes satisfy a modified energy law irrespective of time step size. Plentiful numerical experiments are performed to validate the methods and demonstrate the robustness. The application in filtration systems, the influence of viscous instability, general permeability, curve interface, and different densities are discussed in details to further illustrate the compatibility and applicability of our developed gPAV numerical methods. |
doi_str_mv | 10.1007/s10915-024-02576-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3069658633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069658633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5b07dbc97e31cf0dc073ce105943bffbf7c0f00202e384602580bd0e1509637f3</originalsourceid><addsrcrecordid>eNp9kM1KxDAQx4MouH68gKeA5-ikaZv2KOqqsOrCqtfQppO1stvUiXXxCXxtoxW8eRiGYf4f8GPsSMKJBNCnQUIpMwFJGifTuUi32ERmWgmdl3KbTaAoMqFTne6yvRBeAKAsymTCPhdofdeIe2qQ-EU8hn6FDZ-1HVbELzuk5YeYVRs-JwxI72235Mv52RO_G9ZIra1WfGGfcY2BO0_8YePF_LkKyKcrvwm87fhi6JF6H2LqlHB88Kpr-NyTHwK_xaatDtiOq1YBD3_3PnucXj6cX4vZ_dXN-dlM2ATgTWQ16Ka2pUYlrYPGglYWJWRlqmrnaqctOIAEElRFmkcWBdQNoMygzJV2ap8dj7k9-dcBw5t58QN1sdIoyMs8K3KloioZVZZ8CITO9NSuK_owEsw3cDMCNxG4-QFu0mhSoylEcbdE-ov-x_UFTKmDgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069658633</pqid></control><display><type>article</type><title>Second-Order Decoupled Linear Energy-Law Preserving gPAV Numerical Schemes for Two-Phase Flows in Superposed Free Flow and Porous Media</title><source>SpringerNature Journals</source><creator>Gao, Yali ; Han, Daozhi</creator><creatorcontrib>Gao, Yali ; Han, Daozhi</creatorcontrib><description>We propose second-order numerical methods based on the generalized positive auxiliary variable (gPAV) framework for solving the Cahn–Hilliard–Navier–Stokes–Darcy model in superposed free flow and porous media. In the gPAV-reformulated system, we introduce an auxiliary variable according to the modified energy law and take account into the interface conditions between the two subdomains. By implicit-explicit temporal discretization, we develop fully decoupled linear gPAV-CNLF and gPAV-BDF2 numerical methods effected with the Galerkin finite element method. The fully discrete schemes satisfy a modified energy law irrespective of time step size. Plentiful numerical experiments are performed to validate the methods and demonstrate the robustness. The application in filtration systems, the influence of viscous instability, general permeability, curve interface, and different densities are discussed in details to further illustrate the compatibility and applicability of our developed gPAV numerical methods.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-024-02576-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Boundary conditions ; Computational Mathematics and Numerical Analysis ; Contamination ; Energy ; Finite element method ; Free flow ; Hydraulics ; Interface stability ; Kinematics ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Numerical analysis ; Numerical methods ; Porous media ; Theoretical ; Two phase flow ; Viscosity</subject><ispartof>Journal of scientific computing, 2024-08, Vol.100 (2), p.36, Article 36</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-5b07dbc97e31cf0dc073ce105943bffbf7c0f00202e384602580bd0e1509637f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-024-02576-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10915-024-02576-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gao, Yali</creatorcontrib><creatorcontrib>Han, Daozhi</creatorcontrib><title>Second-Order Decoupled Linear Energy-Law Preserving gPAV Numerical Schemes for Two-Phase Flows in Superposed Free Flow and Porous Media</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We propose second-order numerical methods based on the generalized positive auxiliary variable (gPAV) framework for solving the Cahn–Hilliard–Navier–Stokes–Darcy model in superposed free flow and porous media. In the gPAV-reformulated system, we introduce an auxiliary variable according to the modified energy law and take account into the interface conditions between the two subdomains. By implicit-explicit temporal discretization, we develop fully decoupled linear gPAV-CNLF and gPAV-BDF2 numerical methods effected with the Galerkin finite element method. The fully discrete schemes satisfy a modified energy law irrespective of time step size. Plentiful numerical experiments are performed to validate the methods and demonstrate the robustness. The application in filtration systems, the influence of viscous instability, general permeability, curve interface, and different densities are discussed in details to further illustrate the compatibility and applicability of our developed gPAV numerical methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Contamination</subject><subject>Energy</subject><subject>Finite element method</subject><subject>Free flow</subject><subject>Hydraulics</subject><subject>Interface stability</subject><subject>Kinematics</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Porous media</subject><subject>Theoretical</subject><subject>Two phase flow</subject><subject>Viscosity</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAQx4MouH68gKeA5-ikaZv2KOqqsOrCqtfQppO1stvUiXXxCXxtoxW8eRiGYf4f8GPsSMKJBNCnQUIpMwFJGifTuUi32ERmWgmdl3KbTaAoMqFTne6yvRBeAKAsymTCPhdofdeIe2qQ-EU8hn6FDZ-1HVbELzuk5YeYVRs-JwxI72235Mv52RO_G9ZIra1WfGGfcY2BO0_8YePF_LkKyKcrvwm87fhi6JF6H2LqlHB88Kpr-NyTHwK_xaatDtiOq1YBD3_3PnucXj6cX4vZ_dXN-dlM2ATgTWQ16Ka2pUYlrYPGglYWJWRlqmrnaqctOIAEElRFmkcWBdQNoMygzJV2ap8dj7k9-dcBw5t58QN1sdIoyMs8K3KloioZVZZ8CITO9NSuK_owEsw3cDMCNxG4-QFu0mhSoylEcbdE-ov-x_UFTKmDgg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Gao, Yali</creator><creator>Han, Daozhi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240801</creationdate><title>Second-Order Decoupled Linear Energy-Law Preserving gPAV Numerical Schemes for Two-Phase Flows in Superposed Free Flow and Porous Media</title><author>Gao, Yali ; Han, Daozhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5b07dbc97e31cf0dc073ce105943bffbf7c0f00202e384602580bd0e1509637f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Contamination</topic><topic>Energy</topic><topic>Finite element method</topic><topic>Free flow</topic><topic>Hydraulics</topic><topic>Interface stability</topic><topic>Kinematics</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Porous media</topic><topic>Theoretical</topic><topic>Two phase flow</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yali</creatorcontrib><creatorcontrib>Han, Daozhi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yali</au><au>Han, Daozhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-Order Decoupled Linear Energy-Law Preserving gPAV Numerical Schemes for Two-Phase Flows in Superposed Free Flow and Porous Media</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>100</volume><issue>2</issue><spage>36</spage><pages>36-</pages><artnum>36</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We propose second-order numerical methods based on the generalized positive auxiliary variable (gPAV) framework for solving the Cahn–Hilliard–Navier–Stokes–Darcy model in superposed free flow and porous media. In the gPAV-reformulated system, we introduce an auxiliary variable according to the modified energy law and take account into the interface conditions between the two subdomains. By implicit-explicit temporal discretization, we develop fully decoupled linear gPAV-CNLF and gPAV-BDF2 numerical methods effected with the Galerkin finite element method. The fully discrete schemes satisfy a modified energy law irrespective of time step size. Plentiful numerical experiments are performed to validate the methods and demonstrate the robustness. The application in filtration systems, the influence of viscous instability, general permeability, curve interface, and different densities are discussed in details to further illustrate the compatibility and applicability of our developed gPAV numerical methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-024-02576-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2024-08, Vol.100 (2), p.36, Article 36 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_3069658633 |
source | SpringerNature Journals |
subjects | Accuracy Algorithms Boundary conditions Computational Mathematics and Numerical Analysis Contamination Energy Finite element method Free flow Hydraulics Interface stability Kinematics Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Methods Numerical analysis Numerical methods Porous media Theoretical Two phase flow Viscosity |
title | Second-Order Decoupled Linear Energy-Law Preserving gPAV Numerical Schemes for Two-Phase Flows in Superposed Free Flow and Porous Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-Order%20Decoupled%20Linear%20Energy-Law%20Preserving%20gPAV%20Numerical%20Schemes%20for%20Two-Phase%20Flows%20in%20Superposed%20Free%20Flow%20and%20Porous%20Media&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Gao,%20Yali&rft.date=2024-08-01&rft.volume=100&rft.issue=2&rft.spage=36&rft.pages=36-&rft.artnum=36&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-024-02576-4&rft_dat=%3Cproquest_cross%3E3069658633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069658633&rft_id=info:pmid/&rfr_iscdi=true |