Probing the physics of star formation (ProPStar)

Context. Electron fraction and cosmic-ray ionization rates in star-forming regions are important quantities in astrochemical modeling and are critical to the degree of coupling between neutrals, ions, and electrons, which regulates the dynamics of the magnetic field. However, these are difficult qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2024-06, Vol.686
Hauptverfasser: Pineda, Jaime E, Sipilä, Olli, Segura-Cox, Dominique M, Valdivia-Mena, Maria Teresa, Neri, Roberto, Kuffmeier, Michael, Ivlev, Alexei V, Offner, Stella S R, Maureira, Maria Jose, Caselli, Paola, Spezzano, Silvia, Cunningham, Nichol, Schmiedeke, Anika, Chen, Mike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Astronomy and astrophysics (Berlin)
container_volume 686
creator Pineda, Jaime E
Sipilä, Olli
Segura-Cox, Dominique M
Valdivia-Mena, Maria Teresa
Neri, Roberto
Kuffmeier, Michael
Ivlev, Alexei V
Offner, Stella S R
Maureira, Maria Jose
Caselli, Paola
Spezzano, Silvia
Cunningham, Nichol
Schmiedeke, Anika
Chen, Mike
description Context. Electron fraction and cosmic-ray ionization rates in star-forming regions are important quantities in astrochemical modeling and are critical to the degree of coupling between neutrals, ions, and electrons, which regulates the dynamics of the magnetic field. However, these are difficult quantities to estimate. Aims. We aim to derive the electron fraction and cosmic-ray ionization rate maps of an active star-forming region. Methods. We combined observations of the nearby NGC 1333 star-forming region carried out with the NOEMA interferometer and IRAM 30 m single dish to generate high spatial dynamic range maps of different molecular transitions. We used the DCO+ and H13CO+ ratio (in addition to complementary data) to estimate the electron fraction and produce cosmic-ray ionization rate maps. Results. We derived the first large-area electron fraction and cosmic-ray ionization rate resolved maps in a star-forming region, with typical values of 10−65 and 10−16.5 s−1, respectively. The maps present clear evidence of enhanced values around embedded young stellar objects (YSOs). This provides strong evidence for locally accelerated cosmic rays. We also found a strong enhancement toward the northwest region in the map that might be related either to an interaction with a bubble or to locally generated cosmic rays by YSOs. We used the typical electron fraction and derived a magnetohydrodynamic (MHD) turbulence dissipation scale of 0.054 pc, which could be tested with future observations. Conclusions. We found a higher cosmic-ray ionization rate compared to the canonical value for N(H2) = 1021−1023 cm−2 of 10−17 s−1 in the region, and it is likely generated by the accreting YSOs. The high value of the electron fraction suggests that new disks will form from gas in the ideal-MHD limit. This indicates that local enhancements of ζ(H2), due to YSOs, should be taken into account in the analysis of clustered star formation.
doi_str_mv 10.1051/0004-6361/202347997
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3069597791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069597791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-8dc625a07ec955808764cb8eb051f4e484d3d6f9b079b2e5ea0a4ace5acd8b043</originalsourceid><addsrcrecordid>eNo9jk1LAzEYhIMouFZ_gZeAFz3EvvlOjlKsCgUL6rkk2cRu0U1N0oP_3gXF0zDDw8wgdEnhloKkcwAQRHFF5wwYF9pafYQ6KjgjoIU6Rt0_cYrOat1NllHDOwTrkv0wvuO2jXi__a5DqDgnXJsrOOXy6dqQR3w9YeuXKbs5RyfJfdR48acz9La8f108ktXzw9PibkUCA9OI6YNi0oGOwUppwGglgjfRT3eTiMKInvcqWQ_aehZldOCEC1G60BsPgs_Q1W_vvuSvQ6xts8uHMk6TGw7KSqu1pfwHuQ1FpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069597791</pqid></control><display><type>article</type><title>Probing the physics of star formation (ProPStar)</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>Pineda, Jaime E ; Sipilä, Olli ; Segura-Cox, Dominique M ; Valdivia-Mena, Maria Teresa ; Neri, Roberto ; Kuffmeier, Michael ; Ivlev, Alexei V ; Offner, Stella S R ; Maureira, Maria Jose ; Caselli, Paola ; Spezzano, Silvia ; Cunningham, Nichol ; Schmiedeke, Anika ; Chen, Mike</creator><creatorcontrib>Pineda, Jaime E ; Sipilä, Olli ; Segura-Cox, Dominique M ; Valdivia-Mena, Maria Teresa ; Neri, Roberto ; Kuffmeier, Michael ; Ivlev, Alexei V ; Offner, Stella S R ; Maureira, Maria Jose ; Caselli, Paola ; Spezzano, Silvia ; Cunningham, Nichol ; Schmiedeke, Anika ; Chen, Mike</creatorcontrib><description>Context. Electron fraction and cosmic-ray ionization rates in star-forming regions are important quantities in astrochemical modeling and are critical to the degree of coupling between neutrals, ions, and electrons, which regulates the dynamics of the magnetic field. However, these are difficult quantities to estimate. Aims. We aim to derive the electron fraction and cosmic-ray ionization rate maps of an active star-forming region. Methods. We combined observations of the nearby NGC 1333 star-forming region carried out with the NOEMA interferometer and IRAM 30 m single dish to generate high spatial dynamic range maps of different molecular transitions. We used the DCO+ and H13CO+ ratio (in addition to complementary data) to estimate the electron fraction and produce cosmic-ray ionization rate maps. Results. We derived the first large-area electron fraction and cosmic-ray ionization rate resolved maps in a star-forming region, with typical values of 10−65 and 10−16.5 s−1, respectively. The maps present clear evidence of enhanced values around embedded young stellar objects (YSOs). This provides strong evidence for locally accelerated cosmic rays. We also found a strong enhancement toward the northwest region in the map that might be related either to an interaction with a bubble or to locally generated cosmic rays by YSOs. We used the typical electron fraction and derived a magnetohydrodynamic (MHD) turbulence dissipation scale of 0.054 pc, which could be tested with future observations. Conclusions. We found a higher cosmic-ray ionization rate compared to the canonical value for N(H2) = 1021−1023 cm−2 of 10−17 s−1 in the region, and it is likely generated by the accreting YSOs. The high value of the electron fraction suggests that new disks will form from gas in the ideal-MHD limit. This indicates that local enhancements of ζ(H2), due to YSOs, should be taken into account in the analysis of clustered star formation.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202347997</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Cosmic rays ; Electrons ; Ionization ; Magnetohydrodynamic turbulence ; Star &amp; galaxy formation ; Star formation</subject><ispartof>Astronomy and astrophysics (Berlin), 2024-06, Vol.686</ispartof><rights>2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-8dc625a07ec955808764cb8eb051f4e484d3d6f9b079b2e5ea0a4ace5acd8b043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Pineda, Jaime E</creatorcontrib><creatorcontrib>Sipilä, Olli</creatorcontrib><creatorcontrib>Segura-Cox, Dominique M</creatorcontrib><creatorcontrib>Valdivia-Mena, Maria Teresa</creatorcontrib><creatorcontrib>Neri, Roberto</creatorcontrib><creatorcontrib>Kuffmeier, Michael</creatorcontrib><creatorcontrib>Ivlev, Alexei V</creatorcontrib><creatorcontrib>Offner, Stella S R</creatorcontrib><creatorcontrib>Maureira, Maria Jose</creatorcontrib><creatorcontrib>Caselli, Paola</creatorcontrib><creatorcontrib>Spezzano, Silvia</creatorcontrib><creatorcontrib>Cunningham, Nichol</creatorcontrib><creatorcontrib>Schmiedeke, Anika</creatorcontrib><creatorcontrib>Chen, Mike</creatorcontrib><title>Probing the physics of star formation (ProPStar)</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Electron fraction and cosmic-ray ionization rates in star-forming regions are important quantities in astrochemical modeling and are critical to the degree of coupling between neutrals, ions, and electrons, which regulates the dynamics of the magnetic field. However, these are difficult quantities to estimate. Aims. We aim to derive the electron fraction and cosmic-ray ionization rate maps of an active star-forming region. Methods. We combined observations of the nearby NGC 1333 star-forming region carried out with the NOEMA interferometer and IRAM 30 m single dish to generate high spatial dynamic range maps of different molecular transitions. We used the DCO+ and H13CO+ ratio (in addition to complementary data) to estimate the electron fraction and produce cosmic-ray ionization rate maps. Results. We derived the first large-area electron fraction and cosmic-ray ionization rate resolved maps in a star-forming region, with typical values of 10−65 and 10−16.5 s−1, respectively. The maps present clear evidence of enhanced values around embedded young stellar objects (YSOs). This provides strong evidence for locally accelerated cosmic rays. We also found a strong enhancement toward the northwest region in the map that might be related either to an interaction with a bubble or to locally generated cosmic rays by YSOs. We used the typical electron fraction and derived a magnetohydrodynamic (MHD) turbulence dissipation scale of 0.054 pc, which could be tested with future observations. Conclusions. We found a higher cosmic-ray ionization rate compared to the canonical value for N(H2) = 1021−1023 cm−2 of 10−17 s−1 in the region, and it is likely generated by the accreting YSOs. The high value of the electron fraction suggests that new disks will form from gas in the ideal-MHD limit. This indicates that local enhancements of ζ(H2), due to YSOs, should be taken into account in the analysis of clustered star formation.</description><subject>Cosmic rays</subject><subject>Electrons</subject><subject>Ionization</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jk1LAzEYhIMouFZ_gZeAFz3EvvlOjlKsCgUL6rkk2cRu0U1N0oP_3gXF0zDDw8wgdEnhloKkcwAQRHFF5wwYF9pafYQ6KjgjoIU6Rt0_cYrOat1NllHDOwTrkv0wvuO2jXi__a5DqDgnXJsrOOXy6dqQR3w9YeuXKbs5RyfJfdR48acz9La8f108ktXzw9PibkUCA9OI6YNi0oGOwUppwGglgjfRT3eTiMKInvcqWQ_aehZldOCEC1G60BsPgs_Q1W_vvuSvQ6xts8uHMk6TGw7KSqu1pfwHuQ1FpQ</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Pineda, Jaime E</creator><creator>Sipilä, Olli</creator><creator>Segura-Cox, Dominique M</creator><creator>Valdivia-Mena, Maria Teresa</creator><creator>Neri, Roberto</creator><creator>Kuffmeier, Michael</creator><creator>Ivlev, Alexei V</creator><creator>Offner, Stella S R</creator><creator>Maureira, Maria Jose</creator><creator>Caselli, Paola</creator><creator>Spezzano, Silvia</creator><creator>Cunningham, Nichol</creator><creator>Schmiedeke, Anika</creator><creator>Chen, Mike</creator><general>EDP Sciences</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240607</creationdate><title>Probing the physics of star formation (ProPStar)</title><author>Pineda, Jaime E ; Sipilä, Olli ; Segura-Cox, Dominique M ; Valdivia-Mena, Maria Teresa ; Neri, Roberto ; Kuffmeier, Michael ; Ivlev, Alexei V ; Offner, Stella S R ; Maureira, Maria Jose ; Caselli, Paola ; Spezzano, Silvia ; Cunningham, Nichol ; Schmiedeke, Anika ; Chen, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-8dc625a07ec955808764cb8eb051f4e484d3d6f9b079b2e5ea0a4ace5acd8b043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cosmic rays</topic><topic>Electrons</topic><topic>Ionization</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pineda, Jaime E</creatorcontrib><creatorcontrib>Sipilä, Olli</creatorcontrib><creatorcontrib>Segura-Cox, Dominique M</creatorcontrib><creatorcontrib>Valdivia-Mena, Maria Teresa</creatorcontrib><creatorcontrib>Neri, Roberto</creatorcontrib><creatorcontrib>Kuffmeier, Michael</creatorcontrib><creatorcontrib>Ivlev, Alexei V</creatorcontrib><creatorcontrib>Offner, Stella S R</creatorcontrib><creatorcontrib>Maureira, Maria Jose</creatorcontrib><creatorcontrib>Caselli, Paola</creatorcontrib><creatorcontrib>Spezzano, Silvia</creatorcontrib><creatorcontrib>Cunningham, Nichol</creatorcontrib><creatorcontrib>Schmiedeke, Anika</creatorcontrib><creatorcontrib>Chen, Mike</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pineda, Jaime E</au><au>Sipilä, Olli</au><au>Segura-Cox, Dominique M</au><au>Valdivia-Mena, Maria Teresa</au><au>Neri, Roberto</au><au>Kuffmeier, Michael</au><au>Ivlev, Alexei V</au><au>Offner, Stella S R</au><au>Maureira, Maria Jose</au><au>Caselli, Paola</au><au>Spezzano, Silvia</au><au>Cunningham, Nichol</au><au>Schmiedeke, Anika</au><au>Chen, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the physics of star formation (ProPStar)</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2024-06-07</date><risdate>2024</risdate><volume>686</volume><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. Electron fraction and cosmic-ray ionization rates in star-forming regions are important quantities in astrochemical modeling and are critical to the degree of coupling between neutrals, ions, and electrons, which regulates the dynamics of the magnetic field. However, these are difficult quantities to estimate. Aims. We aim to derive the electron fraction and cosmic-ray ionization rate maps of an active star-forming region. Methods. We combined observations of the nearby NGC 1333 star-forming region carried out with the NOEMA interferometer and IRAM 30 m single dish to generate high spatial dynamic range maps of different molecular transitions. We used the DCO+ and H13CO+ ratio (in addition to complementary data) to estimate the electron fraction and produce cosmic-ray ionization rate maps. Results. We derived the first large-area electron fraction and cosmic-ray ionization rate resolved maps in a star-forming region, with typical values of 10−65 and 10−16.5 s−1, respectively. The maps present clear evidence of enhanced values around embedded young stellar objects (YSOs). This provides strong evidence for locally accelerated cosmic rays. We also found a strong enhancement toward the northwest region in the map that might be related either to an interaction with a bubble or to locally generated cosmic rays by YSOs. We used the typical electron fraction and derived a magnetohydrodynamic (MHD) turbulence dissipation scale of 0.054 pc, which could be tested with future observations. Conclusions. We found a higher cosmic-ray ionization rate compared to the canonical value for N(H2) = 1021−1023 cm−2 of 10−17 s−1 in the region, and it is likely generated by the accreting YSOs. The high value of the electron fraction suggests that new disks will form from gas in the ideal-MHD limit. This indicates that local enhancements of ζ(H2), due to YSOs, should be taken into account in the analysis of clustered star formation.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202347997</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2024-06, Vol.686
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_3069597791
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences
subjects Cosmic rays
Electrons
Ionization
Magnetohydrodynamic turbulence
Star & galaxy formation
Star formation
title Probing the physics of star formation (ProPStar)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20physics%20of%20star%20formation%20(ProPStar)&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Pineda,%20Jaime%20E&rft.date=2024-06-07&rft.volume=686&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202347997&rft_dat=%3Cproquest%3E3069597791%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069597791&rft_id=info:pmid/&rfr_iscdi=true