Rational Design of Near‐Infrared Polymer Acceptors Using Steric Hindrance Strategy for High‐Performance Organic Solar Cells

The unprecedented development of all‐polymer solar cells (all‐PSCs) is hindered by their low short‐circuit current density (Jsc), mainly due to the absence of near‐infrared (NIR) polymer acceptor materials. To tackle this challenge, a molecular design principle is proposed, which involves the regula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-06, Vol.34 (25), p.n/a
Hauptverfasser: Li, Xiaoming, Chen, Lingyu, Meng, Lingxian, Zhang, Chen, Duan, Xiaopeng, Man, Yuheng, Jee, Min Hun, Han, Lili, Pan, Yiyang, Wei, Donghui, Wan, Xiangjian, Woo, Han Young, Chen, Yongsheng, Sun, Yanming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced functional materials
container_volume 34
creator Li, Xiaoming
Chen, Lingyu
Meng, Lingxian
Zhang, Chen
Duan, Xiaopeng
Man, Yuheng
Jee, Min Hun
Han, Lili
Pan, Yiyang
Wei, Donghui
Wan, Xiangjian
Woo, Han Young
Chen, Yongsheng
Sun, Yanming
description The unprecedented development of all‐polymer solar cells (all‐PSCs) is hindered by their low short‐circuit current density (Jsc), mainly due to the absence of near‐infrared (NIR) polymer acceptor materials. To tackle this challenge, a molecular design principle is proposed, which involves the regulation of steric hindrance on the fused‐ring backbone to obtain NIR polymer acceptors. Accordingly, three acceptors named PTz‐Ph, PTz‐Me, and PTz‐H are synthesized by substituting the Phenyl, Methyl, and Hydrogen in the beta position of the thiophene unit based on fused‐ring molecules. Different from the necessity of steric hindrance of small molecule acceptors in achieving an outstanding performance, polymer acceptor PTz‐H without steric hindrance‐substitution achieves a record‐high efficiency for the benzotriazole‐based all‐PSCs. Then, introducing PTz‐H into the binary PBDB‐T:PTz‐BO system, the ternary all‐PSC exhibits a splendid efficiency of 18.16%, which has surpassed the efficiencies of most benzo[c][1,2,5]thiadiazole‐based counterparts. In addition, an organic tandem solar cell is successfully fabricated, which exhibits a high efficiency of 17.49%. This work provides an effective and readily accessible design strategy for designing high‐performance NIR polymer acceptors, showing the great potential for future organic photovoltaic applications. Three polymer acceptors named PTz‐Ph, PTz‐Me, and PTz‐H are synthesized by substituting the Phenyl, Methyl, and Hydrogen in the beta position of the thiophene unit based on small molecules. PTz‐H‐based device achieves a record‐high efficiency of 18.16% and the highest photocurrent for all‐polymer solar cells reported in the literature thus far.
doi_str_mv 10.1002/adfm.202316090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3069539594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069539594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-d11b1b83b55b9f46093e1c58a798b58b62a90275097c3ea9e5b71d7c99d17f83</originalsourceid><addsrcrecordid>eNqFUMFOwkAUbIwmInr1vIlncLdLu90jARESFCKYeGu229da0nbxbYnpST_Bb_RLXMTo0dN7b97MJDOed8lon1HqX6s0q_o-9TkLqaRHXoeFLOxx6kfHvzt7OvXOrN1QyoTgg4739qCawtSqJGOwRV4Tk5F7UPj5_jGrM1QIKVmasq0AyVBr2DYGLXm0RZ2TVQNYaDIt6hRVrcEBqBrIW5IZdHD-7FyWgO6qvv8LzFXtFCtTKiQjKEt77p1kqrRw8TO73npysx5Ne_PF7Ww0nPc0Z4L2UsYSlkQ8CYJEZgMXkAPTQaSEjJIgSkJfSeqLgEqhOSgJQSJYKrSUKRNZxLve1cF2i-ZlB7aJN2aHLraNOQ1lwGUgB47VP7A0GmsRsniLRaWwjRmN9x3H-47j346dQB4Er0UJ7T_seDie3P1pvwDRpoLm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069539594</pqid></control><display><type>article</type><title>Rational Design of Near‐Infrared Polymer Acceptors Using Steric Hindrance Strategy for High‐Performance Organic Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Xiaoming ; Chen, Lingyu ; Meng, Lingxian ; Zhang, Chen ; Duan, Xiaopeng ; Man, Yuheng ; Jee, Min Hun ; Han, Lili ; Pan, Yiyang ; Wei, Donghui ; Wan, Xiangjian ; Woo, Han Young ; Chen, Yongsheng ; Sun, Yanming</creator><creatorcontrib>Li, Xiaoming ; Chen, Lingyu ; Meng, Lingxian ; Zhang, Chen ; Duan, Xiaopeng ; Man, Yuheng ; Jee, Min Hun ; Han, Lili ; Pan, Yiyang ; Wei, Donghui ; Wan, Xiangjian ; Woo, Han Young ; Chen, Yongsheng ; Sun, Yanming</creatorcontrib><description>The unprecedented development of all‐polymer solar cells (all‐PSCs) is hindered by their low short‐circuit current density (Jsc), mainly due to the absence of near‐infrared (NIR) polymer acceptor materials. To tackle this challenge, a molecular design principle is proposed, which involves the regulation of steric hindrance on the fused‐ring backbone to obtain NIR polymer acceptors. Accordingly, three acceptors named PTz‐Ph, PTz‐Me, and PTz‐H are synthesized by substituting the Phenyl, Methyl, and Hydrogen in the beta position of the thiophene unit based on fused‐ring molecules. Different from the necessity of steric hindrance of small molecule acceptors in achieving an outstanding performance, polymer acceptor PTz‐H without steric hindrance‐substitution achieves a record‐high efficiency for the benzotriazole‐based all‐PSCs. Then, introducing PTz‐H into the binary PBDB‐T:PTz‐BO system, the ternary all‐PSC exhibits a splendid efficiency of 18.16%, which has surpassed the efficiencies of most benzo[c][1,2,5]thiadiazole‐based counterparts. In addition, an organic tandem solar cell is successfully fabricated, which exhibits a high efficiency of 17.49%. This work provides an effective and readily accessible design strategy for designing high‐performance NIR polymer acceptors, showing the great potential for future organic photovoltaic applications. Three polymer acceptors named PTz‐Ph, PTz‐Me, and PTz‐H are synthesized by substituting the Phenyl, Methyl, and Hydrogen in the beta position of the thiophene unit based on small molecules. PTz‐H‐based device achieves a record‐high efficiency of 18.16% and the highest photocurrent for all‐polymer solar cells reported in the literature thus far.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202316090</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acceptor materials ; all‐polymer solar cells ; Benzotriazole ; Efficiency ; Near infrared radiation ; near‐infrared ; Photovoltaic cells ; polymer acceptor ; Polymers ; Solar cells ; Steric hindrance ; Thiadiazoles</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (25), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-d11b1b83b55b9f46093e1c58a798b58b62a90275097c3ea9e5b71d7c99d17f83</citedby><cites>FETCH-LOGICAL-c3170-d11b1b83b55b9f46093e1c58a798b58b62a90275097c3ea9e5b71d7c99d17f83</cites><orcidid>0000-0001-7839-3199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202316090$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202316090$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Li, Xiaoming</creatorcontrib><creatorcontrib>Chen, Lingyu</creatorcontrib><creatorcontrib>Meng, Lingxian</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Duan, Xiaopeng</creatorcontrib><creatorcontrib>Man, Yuheng</creatorcontrib><creatorcontrib>Jee, Min Hun</creatorcontrib><creatorcontrib>Han, Lili</creatorcontrib><creatorcontrib>Pan, Yiyang</creatorcontrib><creatorcontrib>Wei, Donghui</creatorcontrib><creatorcontrib>Wan, Xiangjian</creatorcontrib><creatorcontrib>Woo, Han Young</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><creatorcontrib>Sun, Yanming</creatorcontrib><title>Rational Design of Near‐Infrared Polymer Acceptors Using Steric Hindrance Strategy for High‐Performance Organic Solar Cells</title><title>Advanced functional materials</title><description>The unprecedented development of all‐polymer solar cells (all‐PSCs) is hindered by their low short‐circuit current density (Jsc), mainly due to the absence of near‐infrared (NIR) polymer acceptor materials. To tackle this challenge, a molecular design principle is proposed, which involves the regulation of steric hindrance on the fused‐ring backbone to obtain NIR polymer acceptors. Accordingly, three acceptors named PTz‐Ph, PTz‐Me, and PTz‐H are synthesized by substituting the Phenyl, Methyl, and Hydrogen in the beta position of the thiophene unit based on fused‐ring molecules. Different from the necessity of steric hindrance of small molecule acceptors in achieving an outstanding performance, polymer acceptor PTz‐H without steric hindrance‐substitution achieves a record‐high efficiency for the benzotriazole‐based all‐PSCs. Then, introducing PTz‐H into the binary PBDB‐T:PTz‐BO system, the ternary all‐PSC exhibits a splendid efficiency of 18.16%, which has surpassed the efficiencies of most benzo[c][1,2,5]thiadiazole‐based counterparts. In addition, an organic tandem solar cell is successfully fabricated, which exhibits a high efficiency of 17.49%. This work provides an effective and readily accessible design strategy for designing high‐performance NIR polymer acceptors, showing the great potential for future organic photovoltaic applications. Three polymer acceptors named PTz‐Ph, PTz‐Me, and PTz‐H are synthesized by substituting the Phenyl, Methyl, and Hydrogen in the beta position of the thiophene unit based on small molecules. PTz‐H‐based device achieves a record‐high efficiency of 18.16% and the highest photocurrent for all‐polymer solar cells reported in the literature thus far.</description><subject>Acceptor materials</subject><subject>all‐polymer solar cells</subject><subject>Benzotriazole</subject><subject>Efficiency</subject><subject>Near infrared radiation</subject><subject>near‐infrared</subject><subject>Photovoltaic cells</subject><subject>polymer acceptor</subject><subject>Polymers</subject><subject>Solar cells</subject><subject>Steric hindrance</subject><subject>Thiadiazoles</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMFOwkAUbIwmInr1vIlncLdLu90jARESFCKYeGu229da0nbxbYnpST_Bb_RLXMTo0dN7b97MJDOed8lon1HqX6s0q_o-9TkLqaRHXoeFLOxx6kfHvzt7OvXOrN1QyoTgg4739qCawtSqJGOwRV4Tk5F7UPj5_jGrM1QIKVmasq0AyVBr2DYGLXm0RZ2TVQNYaDIt6hRVrcEBqBrIW5IZdHD-7FyWgO6qvv8LzFXtFCtTKiQjKEt77p1kqrRw8TO73npysx5Ne_PF7Ww0nPc0Z4L2UsYSlkQ8CYJEZgMXkAPTQaSEjJIgSkJfSeqLgEqhOSgJQSJYKrSUKRNZxLve1cF2i-ZlB7aJN2aHLraNOQ1lwGUgB47VP7A0GmsRsniLRaWwjRmN9x3H-47j346dQB4Er0UJ7T_seDie3P1pvwDRpoLm</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Li, Xiaoming</creator><creator>Chen, Lingyu</creator><creator>Meng, Lingxian</creator><creator>Zhang, Chen</creator><creator>Duan, Xiaopeng</creator><creator>Man, Yuheng</creator><creator>Jee, Min Hun</creator><creator>Han, Lili</creator><creator>Pan, Yiyang</creator><creator>Wei, Donghui</creator><creator>Wan, Xiangjian</creator><creator>Woo, Han Young</creator><creator>Chen, Yongsheng</creator><creator>Sun, Yanming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7839-3199</orcidid></search><sort><creationdate>20240601</creationdate><title>Rational Design of Near‐Infrared Polymer Acceptors Using Steric Hindrance Strategy for High‐Performance Organic Solar Cells</title><author>Li, Xiaoming ; Chen, Lingyu ; Meng, Lingxian ; Zhang, Chen ; Duan, Xiaopeng ; Man, Yuheng ; Jee, Min Hun ; Han, Lili ; Pan, Yiyang ; Wei, Donghui ; Wan, Xiangjian ; Woo, Han Young ; Chen, Yongsheng ; Sun, Yanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-d11b1b83b55b9f46093e1c58a798b58b62a90275097c3ea9e5b71d7c99d17f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acceptor materials</topic><topic>all‐polymer solar cells</topic><topic>Benzotriazole</topic><topic>Efficiency</topic><topic>Near infrared radiation</topic><topic>near‐infrared</topic><topic>Photovoltaic cells</topic><topic>polymer acceptor</topic><topic>Polymers</topic><topic>Solar cells</topic><topic>Steric hindrance</topic><topic>Thiadiazoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaoming</creatorcontrib><creatorcontrib>Chen, Lingyu</creatorcontrib><creatorcontrib>Meng, Lingxian</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Duan, Xiaopeng</creatorcontrib><creatorcontrib>Man, Yuheng</creatorcontrib><creatorcontrib>Jee, Min Hun</creatorcontrib><creatorcontrib>Han, Lili</creatorcontrib><creatorcontrib>Pan, Yiyang</creatorcontrib><creatorcontrib>Wei, Donghui</creatorcontrib><creatorcontrib>Wan, Xiangjian</creatorcontrib><creatorcontrib>Woo, Han Young</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><creatorcontrib>Sun, Yanming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaoming</au><au>Chen, Lingyu</au><au>Meng, Lingxian</au><au>Zhang, Chen</au><au>Duan, Xiaopeng</au><au>Man, Yuheng</au><au>Jee, Min Hun</au><au>Han, Lili</au><au>Pan, Yiyang</au><au>Wei, Donghui</au><au>Wan, Xiangjian</au><au>Woo, Han Young</au><au>Chen, Yongsheng</au><au>Sun, Yanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Design of Near‐Infrared Polymer Acceptors Using Steric Hindrance Strategy for High‐Performance Organic Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>25</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The unprecedented development of all‐polymer solar cells (all‐PSCs) is hindered by their low short‐circuit current density (Jsc), mainly due to the absence of near‐infrared (NIR) polymer acceptor materials. To tackle this challenge, a molecular design principle is proposed, which involves the regulation of steric hindrance on the fused‐ring backbone to obtain NIR polymer acceptors. Accordingly, three acceptors named PTz‐Ph, PTz‐Me, and PTz‐H are synthesized by substituting the Phenyl, Methyl, and Hydrogen in the beta position of the thiophene unit based on fused‐ring molecules. Different from the necessity of steric hindrance of small molecule acceptors in achieving an outstanding performance, polymer acceptor PTz‐H without steric hindrance‐substitution achieves a record‐high efficiency for the benzotriazole‐based all‐PSCs. Then, introducing PTz‐H into the binary PBDB‐T:PTz‐BO system, the ternary all‐PSC exhibits a splendid efficiency of 18.16%, which has surpassed the efficiencies of most benzo[c][1,2,5]thiadiazole‐based counterparts. In addition, an organic tandem solar cell is successfully fabricated, which exhibits a high efficiency of 17.49%. This work provides an effective and readily accessible design strategy for designing high‐performance NIR polymer acceptors, showing the great potential for future organic photovoltaic applications. Three polymer acceptors named PTz‐Ph, PTz‐Me, and PTz‐H are synthesized by substituting the Phenyl, Methyl, and Hydrogen in the beta position of the thiophene unit based on small molecules. PTz‐H‐based device achieves a record‐high efficiency of 18.16% and the highest photocurrent for all‐polymer solar cells reported in the literature thus far.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202316090</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7839-3199</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-06, Vol.34 (25), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3069539594
source Wiley Online Library Journals Frontfile Complete
subjects Acceptor materials
all‐polymer solar cells
Benzotriazole
Efficiency
Near infrared radiation
near‐infrared
Photovoltaic cells
polymer acceptor
Polymers
Solar cells
Steric hindrance
Thiadiazoles
title Rational Design of Near‐Infrared Polymer Acceptors Using Steric Hindrance Strategy for High‐Performance Organic Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Design%20of%20Near%E2%80%90Infrared%20Polymer%20Acceptors%20Using%20Steric%20Hindrance%20Strategy%20for%20High%E2%80%90Performance%20Organic%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Xiaoming&rft.date=2024-06-01&rft.volume=34&rft.issue=25&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202316090&rft_dat=%3Cproquest_cross%3E3069539594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069539594&rft_id=info:pmid/&rfr_iscdi=true