Metastructure “Trap” Coating by Acoustic Confinement Effect for Antibacterial Sonothermal Therapy

Antibacterial sonothermal therapy (ASTT) is attractive for treating implant‐associated infection, which addresses the limitations of poor penetration of photothermal therapy. However, achieving implant surface‐specific ultrasound heating is incredibly challenging. Inspired by the porous acoustic met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-06, Vol.34 (25), p.n/a
Hauptverfasser: Guan, Shiwei, Chen, Shuhan, Zhang, Xianming, Zhang, Haifeng, Liu, Xingdan, Hou, Zhiyu, Wang, Fang, Qian, Shi, Zhu, Hongqin, Tan, Ji, Liu, Xuanyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced functional materials
container_volume 34
creator Guan, Shiwei
Chen, Shuhan
Zhang, Xianming
Zhang, Haifeng
Liu, Xingdan
Hou, Zhiyu
Wang, Fang
Qian, Shi
Zhu, Hongqin
Tan, Ji
Liu, Xuanyong
description Antibacterial sonothermal therapy (ASTT) is attractive for treating implant‐associated infection, which addresses the limitations of poor penetration of photothermal therapy. However, achieving implant surface‐specific ultrasound heating is incredibly challenging. Inspired by the porous acoustic metastructure in noise reduction, the acoustic metastructure would be a new strategy for attaining ASTT. Herein, an “acoustic confinement effect” is proposed to “trap” ultrasound for the metastructure TiO2 porous coating on titanium implants. The metastructure coating accomplishes specific acoustic absorption and efficient acoustic‐to‐thermal conversion, surpassing the non‐specific heating of conventional coatings. The theoretical calculation and experiment of metastructure porous coating prove the acoustic‐to‐thermal conversion mechanism, which is also validated in metastructure porous coatings on medical polyetheretherketone, indicating it is universal. Excitingly, this acoustic metastructure “trap” can capture bacteria and local sonothermal enhancement, exhibiting superior ASTT antibacterial rates (S. aureus, 99.69%; E. coil, 99.58%) at low‐power ultrasound. In addition, the metastructure TiO2 coating mimics human bone and demonstrates outstanding osseointegration. This study sheds substantial light on developing the acoustic responsive surface, broadening a new direction of acoustic metamaterials in medical applications. A strategy of fabricating metastructure coating on implant is proposed, which can act as the “trap” of bacteria and acoustic. Benefiting from the “acoustic confinement effect”, the as‐prepared porous metastructure TiO2 coating rapidly eliminates bacterial infection by sonothermal effect. This study broadens a new direction of acoustic metamaterials in medical applications.
doi_str_mv 10.1002/adfm.202316093
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3069539509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069539509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-6cc456206e88a857750b37e32a11a40340a86338259c3e3510e8d44c313600f03</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRsFavnhc8p85mkk1yDLVVocWDFbwt2-2upjTZuNkgufVB9OX6JKZU6tHT_Az_NwMfIdcMRgwgvJUrU45CCJFxyPCEDBhnPEAI09NjZq_n5KJp1gAsSTAaED3XXjbetcq3TtPd9mvhZL3bftOxlb6o3uiyo7mybeML1e8qU1S61JWnE2O08tRYR_PKF0upvHaF3NBnW1n_rl3Z50U_Zd1dkjMjN42--p1D8jKdLMYPwezp_nGczwKFLMGAKxXFPASu01SmcZLEsMREYygZkxFgBDLliGkYZwo1xgx0uoqiHkYOYACH5OZwt3b2o9WNF2vbuqp_KRB4FmMW92qGZHRoKWebxmkjaleU0nWCgdirFHuV4qiyB7ID8FlsdPdPW-R30_kf-wNuU3j-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069539509</pqid></control><display><type>article</type><title>Metastructure “Trap” Coating by Acoustic Confinement Effect for Antibacterial Sonothermal Therapy</title><source>Access via Wiley Online Library</source><creator>Guan, Shiwei ; Chen, Shuhan ; Zhang, Xianming ; Zhang, Haifeng ; Liu, Xingdan ; Hou, Zhiyu ; Wang, Fang ; Qian, Shi ; Zhu, Hongqin ; Tan, Ji ; Liu, Xuanyong</creator><creatorcontrib>Guan, Shiwei ; Chen, Shuhan ; Zhang, Xianming ; Zhang, Haifeng ; Liu, Xingdan ; Hou, Zhiyu ; Wang, Fang ; Qian, Shi ; Zhu, Hongqin ; Tan, Ji ; Liu, Xuanyong</creatorcontrib><description>Antibacterial sonothermal therapy (ASTT) is attractive for treating implant‐associated infection, which addresses the limitations of poor penetration of photothermal therapy. However, achieving implant surface‐specific ultrasound heating is incredibly challenging. Inspired by the porous acoustic metastructure in noise reduction, the acoustic metastructure would be a new strategy for attaining ASTT. Herein, an “acoustic confinement effect” is proposed to “trap” ultrasound for the metastructure TiO2 porous coating on titanium implants. The metastructure coating accomplishes specific acoustic absorption and efficient acoustic‐to‐thermal conversion, surpassing the non‐specific heating of conventional coatings. The theoretical calculation and experiment of metastructure porous coating prove the acoustic‐to‐thermal conversion mechanism, which is also validated in metastructure porous coatings on medical polyetheretherketone, indicating it is universal. Excitingly, this acoustic metastructure “trap” can capture bacteria and local sonothermal enhancement, exhibiting superior ASTT antibacterial rates (S. aureus, 99.69%; E. coil, 99.58%) at low‐power ultrasound. In addition, the metastructure TiO2 coating mimics human bone and demonstrates outstanding osseointegration. This study sheds substantial light on developing the acoustic responsive surface, broadening a new direction of acoustic metamaterials in medical applications. A strategy of fabricating metastructure coating on implant is proposed, which can act as the “trap” of bacteria and acoustic. Benefiting from the “acoustic confinement effect”, the as‐prepared porous metastructure TiO2 coating rapidly eliminates bacterial infection by sonothermal effect. This study broadens a new direction of acoustic metamaterials in medical applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202316093</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acoustic absorption ; acoustic confinement effect ; Acoustics ; antibacteria ; Antiinfectives and antibacterials ; Coatings ; Confinement ; Heating ; Metamaterials ; metastructure coating ; Photothermal conversion ; Polyether ether ketones ; sonothermal therapy ; Therapy ; Titanium dioxide ; titanium implant ; Transplants &amp; implants ; Ultrasonic imaging</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (25), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-6cc456206e88a857750b37e32a11a40340a86338259c3e3510e8d44c313600f03</citedby><cites>FETCH-LOGICAL-c3173-6cc456206e88a857750b37e32a11a40340a86338259c3e3510e8d44c313600f03</cites><orcidid>0000-0001-9440-8143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202316093$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202316093$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Guan, Shiwei</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>Zhang, Xianming</creatorcontrib><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Liu, Xingdan</creatorcontrib><creatorcontrib>Hou, Zhiyu</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Qian, Shi</creatorcontrib><creatorcontrib>Zhu, Hongqin</creatorcontrib><creatorcontrib>Tan, Ji</creatorcontrib><creatorcontrib>Liu, Xuanyong</creatorcontrib><title>Metastructure “Trap” Coating by Acoustic Confinement Effect for Antibacterial Sonothermal Therapy</title><title>Advanced functional materials</title><description>Antibacterial sonothermal therapy (ASTT) is attractive for treating implant‐associated infection, which addresses the limitations of poor penetration of photothermal therapy. However, achieving implant surface‐specific ultrasound heating is incredibly challenging. Inspired by the porous acoustic metastructure in noise reduction, the acoustic metastructure would be a new strategy for attaining ASTT. Herein, an “acoustic confinement effect” is proposed to “trap” ultrasound for the metastructure TiO2 porous coating on titanium implants. The metastructure coating accomplishes specific acoustic absorption and efficient acoustic‐to‐thermal conversion, surpassing the non‐specific heating of conventional coatings. The theoretical calculation and experiment of metastructure porous coating prove the acoustic‐to‐thermal conversion mechanism, which is also validated in metastructure porous coatings on medical polyetheretherketone, indicating it is universal. Excitingly, this acoustic metastructure “trap” can capture bacteria and local sonothermal enhancement, exhibiting superior ASTT antibacterial rates (S. aureus, 99.69%; E. coil, 99.58%) at low‐power ultrasound. In addition, the metastructure TiO2 coating mimics human bone and demonstrates outstanding osseointegration. This study sheds substantial light on developing the acoustic responsive surface, broadening a new direction of acoustic metamaterials in medical applications. A strategy of fabricating metastructure coating on implant is proposed, which can act as the “trap” of bacteria and acoustic. Benefiting from the “acoustic confinement effect”, the as‐prepared porous metastructure TiO2 coating rapidly eliminates bacterial infection by sonothermal effect. This study broadens a new direction of acoustic metamaterials in medical applications.</description><subject>Acoustic absorption</subject><subject>acoustic confinement effect</subject><subject>Acoustics</subject><subject>antibacteria</subject><subject>Antiinfectives and antibacterials</subject><subject>Coatings</subject><subject>Confinement</subject><subject>Heating</subject><subject>Metamaterials</subject><subject>metastructure coating</subject><subject>Photothermal conversion</subject><subject>Polyether ether ketones</subject><subject>sonothermal therapy</subject><subject>Therapy</subject><subject>Titanium dioxide</subject><subject>titanium implant</subject><subject>Transplants &amp; implants</subject><subject>Ultrasonic imaging</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRsFavnhc8p85mkk1yDLVVocWDFbwt2-2upjTZuNkgufVB9OX6JKZU6tHT_Az_NwMfIdcMRgwgvJUrU45CCJFxyPCEDBhnPEAI09NjZq_n5KJp1gAsSTAaED3XXjbetcq3TtPd9mvhZL3bftOxlb6o3uiyo7mybeML1e8qU1S61JWnE2O08tRYR_PKF0upvHaF3NBnW1n_rl3Z50U_Zd1dkjMjN42--p1D8jKdLMYPwezp_nGczwKFLMGAKxXFPASu01SmcZLEsMREYygZkxFgBDLliGkYZwo1xgx0uoqiHkYOYACH5OZwt3b2o9WNF2vbuqp_KRB4FmMW92qGZHRoKWebxmkjaleU0nWCgdirFHuV4qiyB7ID8FlsdPdPW-R30_kf-wNuU3j-</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Guan, Shiwei</creator><creator>Chen, Shuhan</creator><creator>Zhang, Xianming</creator><creator>Zhang, Haifeng</creator><creator>Liu, Xingdan</creator><creator>Hou, Zhiyu</creator><creator>Wang, Fang</creator><creator>Qian, Shi</creator><creator>Zhu, Hongqin</creator><creator>Tan, Ji</creator><creator>Liu, Xuanyong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9440-8143</orcidid></search><sort><creationdate>20240601</creationdate><title>Metastructure “Trap” Coating by Acoustic Confinement Effect for Antibacterial Sonothermal Therapy</title><author>Guan, Shiwei ; Chen, Shuhan ; Zhang, Xianming ; Zhang, Haifeng ; Liu, Xingdan ; Hou, Zhiyu ; Wang, Fang ; Qian, Shi ; Zhu, Hongqin ; Tan, Ji ; Liu, Xuanyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-6cc456206e88a857750b37e32a11a40340a86338259c3e3510e8d44c313600f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic absorption</topic><topic>acoustic confinement effect</topic><topic>Acoustics</topic><topic>antibacteria</topic><topic>Antiinfectives and antibacterials</topic><topic>Coatings</topic><topic>Confinement</topic><topic>Heating</topic><topic>Metamaterials</topic><topic>metastructure coating</topic><topic>Photothermal conversion</topic><topic>Polyether ether ketones</topic><topic>sonothermal therapy</topic><topic>Therapy</topic><topic>Titanium dioxide</topic><topic>titanium implant</topic><topic>Transplants &amp; implants</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Shiwei</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>Zhang, Xianming</creatorcontrib><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Liu, Xingdan</creatorcontrib><creatorcontrib>Hou, Zhiyu</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Qian, Shi</creatorcontrib><creatorcontrib>Zhu, Hongqin</creatorcontrib><creatorcontrib>Tan, Ji</creatorcontrib><creatorcontrib>Liu, Xuanyong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Shiwei</au><au>Chen, Shuhan</au><au>Zhang, Xianming</au><au>Zhang, Haifeng</au><au>Liu, Xingdan</au><au>Hou, Zhiyu</au><au>Wang, Fang</au><au>Qian, Shi</au><au>Zhu, Hongqin</au><au>Tan, Ji</au><au>Liu, Xuanyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metastructure “Trap” Coating by Acoustic Confinement Effect for Antibacterial Sonothermal Therapy</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>25</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Antibacterial sonothermal therapy (ASTT) is attractive for treating implant‐associated infection, which addresses the limitations of poor penetration of photothermal therapy. However, achieving implant surface‐specific ultrasound heating is incredibly challenging. Inspired by the porous acoustic metastructure in noise reduction, the acoustic metastructure would be a new strategy for attaining ASTT. Herein, an “acoustic confinement effect” is proposed to “trap” ultrasound for the metastructure TiO2 porous coating on titanium implants. The metastructure coating accomplishes specific acoustic absorption and efficient acoustic‐to‐thermal conversion, surpassing the non‐specific heating of conventional coatings. The theoretical calculation and experiment of metastructure porous coating prove the acoustic‐to‐thermal conversion mechanism, which is also validated in metastructure porous coatings on medical polyetheretherketone, indicating it is universal. Excitingly, this acoustic metastructure “trap” can capture bacteria and local sonothermal enhancement, exhibiting superior ASTT antibacterial rates (S. aureus, 99.69%; E. coil, 99.58%) at low‐power ultrasound. In addition, the metastructure TiO2 coating mimics human bone and demonstrates outstanding osseointegration. This study sheds substantial light on developing the acoustic responsive surface, broadening a new direction of acoustic metamaterials in medical applications. A strategy of fabricating metastructure coating on implant is proposed, which can act as the “trap” of bacteria and acoustic. Benefiting from the “acoustic confinement effect”, the as‐prepared porous metastructure TiO2 coating rapidly eliminates bacterial infection by sonothermal effect. This study broadens a new direction of acoustic metamaterials in medical applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202316093</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9440-8143</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-06, Vol.34 (25), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3069539509
source Access via Wiley Online Library
subjects Acoustic absorption
acoustic confinement effect
Acoustics
antibacteria
Antiinfectives and antibacterials
Coatings
Confinement
Heating
Metamaterials
metastructure coating
Photothermal conversion
Polyether ether ketones
sonothermal therapy
Therapy
Titanium dioxide
titanium implant
Transplants & implants
Ultrasonic imaging
title Metastructure “Trap” Coating by Acoustic Confinement Effect for Antibacterial Sonothermal Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metastructure%20%E2%80%9CTrap%E2%80%9D%20Coating%20by%20Acoustic%20Confinement%20Effect%20for%20Antibacterial%20Sonothermal%20Therapy&rft.jtitle=Advanced%20functional%20materials&rft.au=Guan,%20Shiwei&rft.date=2024-06-01&rft.volume=34&rft.issue=25&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202316093&rft_dat=%3Cproquest_cross%3E3069539509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069539509&rft_id=info:pmid/&rfr_iscdi=true