Metastructure “Trap” Coating by Acoustic Confinement Effect for Antibacterial Sonothermal Therapy
Antibacterial sonothermal therapy (ASTT) is attractive for treating implant‐associated infection, which addresses the limitations of poor penetration of photothermal therapy. However, achieving implant surface‐specific ultrasound heating is incredibly challenging. Inspired by the porous acoustic met...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-06, Vol.34 (25), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 25 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Guan, Shiwei Chen, Shuhan Zhang, Xianming Zhang, Haifeng Liu, Xingdan Hou, Zhiyu Wang, Fang Qian, Shi Zhu, Hongqin Tan, Ji Liu, Xuanyong |
description | Antibacterial sonothermal therapy (ASTT) is attractive for treating implant‐associated infection, which addresses the limitations of poor penetration of photothermal therapy. However, achieving implant surface‐specific ultrasound heating is incredibly challenging. Inspired by the porous acoustic metastructure in noise reduction, the acoustic metastructure would be a new strategy for attaining ASTT. Herein, an “acoustic confinement effect” is proposed to “trap” ultrasound for the metastructure TiO2 porous coating on titanium implants. The metastructure coating accomplishes specific acoustic absorption and efficient acoustic‐to‐thermal conversion, surpassing the non‐specific heating of conventional coatings. The theoretical calculation and experiment of metastructure porous coating prove the acoustic‐to‐thermal conversion mechanism, which is also validated in metastructure porous coatings on medical polyetheretherketone, indicating it is universal. Excitingly, this acoustic metastructure “trap” can capture bacteria and local sonothermal enhancement, exhibiting superior ASTT antibacterial rates (S. aureus, 99.69%; E. coil, 99.58%) at low‐power ultrasound. In addition, the metastructure TiO2 coating mimics human bone and demonstrates outstanding osseointegration. This study sheds substantial light on developing the acoustic responsive surface, broadening a new direction of acoustic metamaterials in medical applications.
A strategy of fabricating metastructure coating on implant is proposed, which can act as the “trap” of bacteria and acoustic. Benefiting from the “acoustic confinement effect”, the as‐prepared porous metastructure TiO2 coating rapidly eliminates bacterial infection by sonothermal effect. This study broadens a new direction of acoustic metamaterials in medical applications. |
doi_str_mv | 10.1002/adfm.202316093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3069539509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069539509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-6cc456206e88a857750b37e32a11a40340a86338259c3e3510e8d44c313600f03</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRsFavnhc8p85mkk1yDLVVocWDFbwt2-2upjTZuNkgufVB9OX6JKZU6tHT_Az_NwMfIdcMRgwgvJUrU45CCJFxyPCEDBhnPEAI09NjZq_n5KJp1gAsSTAaED3XXjbetcq3TtPd9mvhZL3bftOxlb6o3uiyo7mybeML1e8qU1S61JWnE2O08tRYR_PKF0upvHaF3NBnW1n_rl3Z50U_Zd1dkjMjN42--p1D8jKdLMYPwezp_nGczwKFLMGAKxXFPASu01SmcZLEsMREYygZkxFgBDLliGkYZwo1xgx0uoqiHkYOYACH5OZwt3b2o9WNF2vbuqp_KRB4FmMW92qGZHRoKWebxmkjaleU0nWCgdirFHuV4qiyB7ID8FlsdPdPW-R30_kf-wNuU3j-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069539509</pqid></control><display><type>article</type><title>Metastructure “Trap” Coating by Acoustic Confinement Effect for Antibacterial Sonothermal Therapy</title><source>Access via Wiley Online Library</source><creator>Guan, Shiwei ; Chen, Shuhan ; Zhang, Xianming ; Zhang, Haifeng ; Liu, Xingdan ; Hou, Zhiyu ; Wang, Fang ; Qian, Shi ; Zhu, Hongqin ; Tan, Ji ; Liu, Xuanyong</creator><creatorcontrib>Guan, Shiwei ; Chen, Shuhan ; Zhang, Xianming ; Zhang, Haifeng ; Liu, Xingdan ; Hou, Zhiyu ; Wang, Fang ; Qian, Shi ; Zhu, Hongqin ; Tan, Ji ; Liu, Xuanyong</creatorcontrib><description>Antibacterial sonothermal therapy (ASTT) is attractive for treating implant‐associated infection, which addresses the limitations of poor penetration of photothermal therapy. However, achieving implant surface‐specific ultrasound heating is incredibly challenging. Inspired by the porous acoustic metastructure in noise reduction, the acoustic metastructure would be a new strategy for attaining ASTT. Herein, an “acoustic confinement effect” is proposed to “trap” ultrasound for the metastructure TiO2 porous coating on titanium implants. The metastructure coating accomplishes specific acoustic absorption and efficient acoustic‐to‐thermal conversion, surpassing the non‐specific heating of conventional coatings. The theoretical calculation and experiment of metastructure porous coating prove the acoustic‐to‐thermal conversion mechanism, which is also validated in metastructure porous coatings on medical polyetheretherketone, indicating it is universal. Excitingly, this acoustic metastructure “trap” can capture bacteria and local sonothermal enhancement, exhibiting superior ASTT antibacterial rates (S. aureus, 99.69%; E. coil, 99.58%) at low‐power ultrasound. In addition, the metastructure TiO2 coating mimics human bone and demonstrates outstanding osseointegration. This study sheds substantial light on developing the acoustic responsive surface, broadening a new direction of acoustic metamaterials in medical applications.
A strategy of fabricating metastructure coating on implant is proposed, which can act as the “trap” of bacteria and acoustic. Benefiting from the “acoustic confinement effect”, the as‐prepared porous metastructure TiO2 coating rapidly eliminates bacterial infection by sonothermal effect. This study broadens a new direction of acoustic metamaterials in medical applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202316093</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acoustic absorption ; acoustic confinement effect ; Acoustics ; antibacteria ; Antiinfectives and antibacterials ; Coatings ; Confinement ; Heating ; Metamaterials ; metastructure coating ; Photothermal conversion ; Polyether ether ketones ; sonothermal therapy ; Therapy ; Titanium dioxide ; titanium implant ; Transplants & implants ; Ultrasonic imaging</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (25), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-6cc456206e88a857750b37e32a11a40340a86338259c3e3510e8d44c313600f03</citedby><cites>FETCH-LOGICAL-c3173-6cc456206e88a857750b37e32a11a40340a86338259c3e3510e8d44c313600f03</cites><orcidid>0000-0001-9440-8143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202316093$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202316093$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Guan, Shiwei</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>Zhang, Xianming</creatorcontrib><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Liu, Xingdan</creatorcontrib><creatorcontrib>Hou, Zhiyu</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Qian, Shi</creatorcontrib><creatorcontrib>Zhu, Hongqin</creatorcontrib><creatorcontrib>Tan, Ji</creatorcontrib><creatorcontrib>Liu, Xuanyong</creatorcontrib><title>Metastructure “Trap” Coating by Acoustic Confinement Effect for Antibacterial Sonothermal Therapy</title><title>Advanced functional materials</title><description>Antibacterial sonothermal therapy (ASTT) is attractive for treating implant‐associated infection, which addresses the limitations of poor penetration of photothermal therapy. However, achieving implant surface‐specific ultrasound heating is incredibly challenging. Inspired by the porous acoustic metastructure in noise reduction, the acoustic metastructure would be a new strategy for attaining ASTT. Herein, an “acoustic confinement effect” is proposed to “trap” ultrasound for the metastructure TiO2 porous coating on titanium implants. The metastructure coating accomplishes specific acoustic absorption and efficient acoustic‐to‐thermal conversion, surpassing the non‐specific heating of conventional coatings. The theoretical calculation and experiment of metastructure porous coating prove the acoustic‐to‐thermal conversion mechanism, which is also validated in metastructure porous coatings on medical polyetheretherketone, indicating it is universal. Excitingly, this acoustic metastructure “trap” can capture bacteria and local sonothermal enhancement, exhibiting superior ASTT antibacterial rates (S. aureus, 99.69%; E. coil, 99.58%) at low‐power ultrasound. In addition, the metastructure TiO2 coating mimics human bone and demonstrates outstanding osseointegration. This study sheds substantial light on developing the acoustic responsive surface, broadening a new direction of acoustic metamaterials in medical applications.
A strategy of fabricating metastructure coating on implant is proposed, which can act as the “trap” of bacteria and acoustic. Benefiting from the “acoustic confinement effect”, the as‐prepared porous metastructure TiO2 coating rapidly eliminates bacterial infection by sonothermal effect. This study broadens a new direction of acoustic metamaterials in medical applications.</description><subject>Acoustic absorption</subject><subject>acoustic confinement effect</subject><subject>Acoustics</subject><subject>antibacteria</subject><subject>Antiinfectives and antibacterials</subject><subject>Coatings</subject><subject>Confinement</subject><subject>Heating</subject><subject>Metamaterials</subject><subject>metastructure coating</subject><subject>Photothermal conversion</subject><subject>Polyether ether ketones</subject><subject>sonothermal therapy</subject><subject>Therapy</subject><subject>Titanium dioxide</subject><subject>titanium implant</subject><subject>Transplants & implants</subject><subject>Ultrasonic imaging</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRsFavnhc8p85mkk1yDLVVocWDFbwt2-2upjTZuNkgufVB9OX6JKZU6tHT_Az_NwMfIdcMRgwgvJUrU45CCJFxyPCEDBhnPEAI09NjZq_n5KJp1gAsSTAaED3XXjbetcq3TtPd9mvhZL3bftOxlb6o3uiyo7mybeML1e8qU1S61JWnE2O08tRYR_PKF0upvHaF3NBnW1n_rl3Z50U_Zd1dkjMjN42--p1D8jKdLMYPwezp_nGczwKFLMGAKxXFPASu01SmcZLEsMREYygZkxFgBDLliGkYZwo1xgx0uoqiHkYOYACH5OZwt3b2o9WNF2vbuqp_KRB4FmMW92qGZHRoKWebxmkjaleU0nWCgdirFHuV4qiyB7ID8FlsdPdPW-R30_kf-wNuU3j-</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Guan, Shiwei</creator><creator>Chen, Shuhan</creator><creator>Zhang, Xianming</creator><creator>Zhang, Haifeng</creator><creator>Liu, Xingdan</creator><creator>Hou, Zhiyu</creator><creator>Wang, Fang</creator><creator>Qian, Shi</creator><creator>Zhu, Hongqin</creator><creator>Tan, Ji</creator><creator>Liu, Xuanyong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9440-8143</orcidid></search><sort><creationdate>20240601</creationdate><title>Metastructure “Trap” Coating by Acoustic Confinement Effect for Antibacterial Sonothermal Therapy</title><author>Guan, Shiwei ; Chen, Shuhan ; Zhang, Xianming ; Zhang, Haifeng ; Liu, Xingdan ; Hou, Zhiyu ; Wang, Fang ; Qian, Shi ; Zhu, Hongqin ; Tan, Ji ; Liu, Xuanyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-6cc456206e88a857750b37e32a11a40340a86338259c3e3510e8d44c313600f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic absorption</topic><topic>acoustic confinement effect</topic><topic>Acoustics</topic><topic>antibacteria</topic><topic>Antiinfectives and antibacterials</topic><topic>Coatings</topic><topic>Confinement</topic><topic>Heating</topic><topic>Metamaterials</topic><topic>metastructure coating</topic><topic>Photothermal conversion</topic><topic>Polyether ether ketones</topic><topic>sonothermal therapy</topic><topic>Therapy</topic><topic>Titanium dioxide</topic><topic>titanium implant</topic><topic>Transplants & implants</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Shiwei</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>Zhang, Xianming</creatorcontrib><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Liu, Xingdan</creatorcontrib><creatorcontrib>Hou, Zhiyu</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Qian, Shi</creatorcontrib><creatorcontrib>Zhu, Hongqin</creatorcontrib><creatorcontrib>Tan, Ji</creatorcontrib><creatorcontrib>Liu, Xuanyong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Shiwei</au><au>Chen, Shuhan</au><au>Zhang, Xianming</au><au>Zhang, Haifeng</au><au>Liu, Xingdan</au><au>Hou, Zhiyu</au><au>Wang, Fang</au><au>Qian, Shi</au><au>Zhu, Hongqin</au><au>Tan, Ji</au><au>Liu, Xuanyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metastructure “Trap” Coating by Acoustic Confinement Effect for Antibacterial Sonothermal Therapy</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>25</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Antibacterial sonothermal therapy (ASTT) is attractive for treating implant‐associated infection, which addresses the limitations of poor penetration of photothermal therapy. However, achieving implant surface‐specific ultrasound heating is incredibly challenging. Inspired by the porous acoustic metastructure in noise reduction, the acoustic metastructure would be a new strategy for attaining ASTT. Herein, an “acoustic confinement effect” is proposed to “trap” ultrasound for the metastructure TiO2 porous coating on titanium implants. The metastructure coating accomplishes specific acoustic absorption and efficient acoustic‐to‐thermal conversion, surpassing the non‐specific heating of conventional coatings. The theoretical calculation and experiment of metastructure porous coating prove the acoustic‐to‐thermal conversion mechanism, which is also validated in metastructure porous coatings on medical polyetheretherketone, indicating it is universal. Excitingly, this acoustic metastructure “trap” can capture bacteria and local sonothermal enhancement, exhibiting superior ASTT antibacterial rates (S. aureus, 99.69%; E. coil, 99.58%) at low‐power ultrasound. In addition, the metastructure TiO2 coating mimics human bone and demonstrates outstanding osseointegration. This study sheds substantial light on developing the acoustic responsive surface, broadening a new direction of acoustic metamaterials in medical applications.
A strategy of fabricating metastructure coating on implant is proposed, which can act as the “trap” of bacteria and acoustic. Benefiting from the “acoustic confinement effect”, the as‐prepared porous metastructure TiO2 coating rapidly eliminates bacterial infection by sonothermal effect. This study broadens a new direction of acoustic metamaterials in medical applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202316093</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9440-8143</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-06, Vol.34 (25), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3069539509 |
source | Access via Wiley Online Library |
subjects | Acoustic absorption acoustic confinement effect Acoustics antibacteria Antiinfectives and antibacterials Coatings Confinement Heating Metamaterials metastructure coating Photothermal conversion Polyether ether ketones sonothermal therapy Therapy Titanium dioxide titanium implant Transplants & implants Ultrasonic imaging |
title | Metastructure “Trap” Coating by Acoustic Confinement Effect for Antibacterial Sonothermal Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metastructure%20%E2%80%9CTrap%E2%80%9D%20Coating%20by%20Acoustic%20Confinement%20Effect%20for%20Antibacterial%20Sonothermal%20Therapy&rft.jtitle=Advanced%20functional%20materials&rft.au=Guan,%20Shiwei&rft.date=2024-06-01&rft.volume=34&rft.issue=25&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202316093&rft_dat=%3Cproquest_cross%3E3069539509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069539509&rft_id=info:pmid/&rfr_iscdi=true |