Shielding‐Anchoring Double Protection Tactics of Imidazopyridazine Additive for Ultrastable Zinc Anode

Aqueous zinc‐based energy storage devices have competitive advantages such as high power density, good safety, and wide source. However, because of the direct touch among zinc anode and aqueous electrolyte, dendrite growth and electrode side reactions are easy to occur in the plating and striping pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-06, Vol.34 (25)
Hauptverfasser: Gu, Xingxing, Du, Yixun, Ren, Xiaolei, Ma, Fengcan, Zhang, Xianfu, Li, Meng, Wang, Qinghong, Zhang, Long, Lai, Chao, Zhang, Shanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page
container_title Advanced functional materials
container_volume 34
creator Gu, Xingxing
Du, Yixun
Ren, Xiaolei
Ma, Fengcan
Zhang, Xianfu
Li, Meng
Wang, Qinghong
Zhang, Long
Lai, Chao
Zhang, Shanqing
description Aqueous zinc‐based energy storage devices have competitive advantages such as high power density, good safety, and wide source. However, because of the direct touch among zinc anode and aqueous electrolyte, dendrite growth and electrode side reactions are easy to occur in the plating and striping process, which seriously hinders the further development of aqueous zinc‐based energy storage devices. Therefore, it is urgent to solve the above problems to expand the existing energy storage devices. In this work, by adding an imidazo[1,2‐b]pyridazine (IP) electrolyte additive, the dendrites' growth and corrosion on the zinc anode surface could be effectively inhibited by the shielding‐anchoring double effects, which are verified by the comprehensive in situ and ex situ characterization techniques as well as the theoretical calculation support. Accordingly, the IP‐based electrolyte encourages extremely high stable zinc anode (cycling 2200 h at 1 mA cm−2) with high average Coulombic efficiency (98.72%). Moreover, the IP‐based Zn‐V2O5 full battery also exhibits excellent reversible capacity, reaching 160.8 mAh g−1 after 400 cycles at 2 A g−1. Through a straightforward alteration to the Zn anode surface, this study considerably enhances the use of highly stable and secure aqueous zinc‐ion batteries.
doi_str_mv 10.1002/adfm.202316541
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3069539492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069539492</sourcerecordid><originalsourceid>FETCH-proquest_journals_30695394923</originalsourceid><addsrcrecordid>eNqNjM1qwkAURgepoLXdur7QtTo_MZpl0JZ2J6gg3ciYmTQjca7OTAp25SP4jH0SI4hrV-fAd_gI6TLaZ5TygVT5rs8pFyweRqxB2ixmcU9QPn66O1u1yLP3W0rZaCSiNinmhdGlMvbn_3RObVagqx2mWG1KDTOHQWfBoIWFrJl5wBy-dkbJP9wf3ZXGakiVMsH8asjRwbIMTvogrwffxmaQWlT6hTRzWXr9emOHvH28Lyafvb3DQ6V9WG-xcrae1oLGyVAkUcLFY9UFiRtP0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069539492</pqid></control><display><type>article</type><title>Shielding‐Anchoring Double Protection Tactics of Imidazopyridazine Additive for Ultrastable Zinc Anode</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gu, Xingxing ; Du, Yixun ; Ren, Xiaolei ; Ma, Fengcan ; Zhang, Xianfu ; Li, Meng ; Wang, Qinghong ; Zhang, Long ; Lai, Chao ; Zhang, Shanqing</creator><creatorcontrib>Gu, Xingxing ; Du, Yixun ; Ren, Xiaolei ; Ma, Fengcan ; Zhang, Xianfu ; Li, Meng ; Wang, Qinghong ; Zhang, Long ; Lai, Chao ; Zhang, Shanqing</creatorcontrib><description>Aqueous zinc‐based energy storage devices have competitive advantages such as high power density, good safety, and wide source. However, because of the direct touch among zinc anode and aqueous electrolyte, dendrite growth and electrode side reactions are easy to occur in the plating and striping process, which seriously hinders the further development of aqueous zinc‐based energy storage devices. Therefore, it is urgent to solve the above problems to expand the existing energy storage devices. In this work, by adding an imidazo[1,2‐b]pyridazine (IP) electrolyte additive, the dendrites' growth and corrosion on the zinc anode surface could be effectively inhibited by the shielding‐anchoring double effects, which are verified by the comprehensive in situ and ex situ characterization techniques as well as the theoretical calculation support. Accordingly, the IP‐based electrolyte encourages extremely high stable zinc anode (cycling 2200 h at 1 mA cm−2) with high average Coulombic efficiency (98.72%). Moreover, the IP‐based Zn‐V2O5 full battery also exhibits excellent reversible capacity, reaching 160.8 mAh g−1 after 400 cycles at 2 A g−1. Through a straightforward alteration to the Zn anode surface, this study considerably enhances the use of highly stable and secure aqueous zinc‐ion batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202316541</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Electrolytes ; Energy storage ; Shielding ; Zinc</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (25)</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Gu, Xingxing</creatorcontrib><creatorcontrib>Du, Yixun</creatorcontrib><creatorcontrib>Ren, Xiaolei</creatorcontrib><creatorcontrib>Ma, Fengcan</creatorcontrib><creatorcontrib>Zhang, Xianfu</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wang, Qinghong</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Lai, Chao</creatorcontrib><creatorcontrib>Zhang, Shanqing</creatorcontrib><title>Shielding‐Anchoring Double Protection Tactics of Imidazopyridazine Additive for Ultrastable Zinc Anode</title><title>Advanced functional materials</title><description>Aqueous zinc‐based energy storage devices have competitive advantages such as high power density, good safety, and wide source. However, because of the direct touch among zinc anode and aqueous electrolyte, dendrite growth and electrode side reactions are easy to occur in the plating and striping process, which seriously hinders the further development of aqueous zinc‐based energy storage devices. Therefore, it is urgent to solve the above problems to expand the existing energy storage devices. In this work, by adding an imidazo[1,2‐b]pyridazine (IP) electrolyte additive, the dendrites' growth and corrosion on the zinc anode surface could be effectively inhibited by the shielding‐anchoring double effects, which are verified by the comprehensive in situ and ex situ characterization techniques as well as the theoretical calculation support. Accordingly, the IP‐based electrolyte encourages extremely high stable zinc anode (cycling 2200 h at 1 mA cm−2) with high average Coulombic efficiency (98.72%). Moreover, the IP‐based Zn‐V2O5 full battery also exhibits excellent reversible capacity, reaching 160.8 mAh g−1 after 400 cycles at 2 A g−1. Through a straightforward alteration to the Zn anode surface, this study considerably enhances the use of highly stable and secure aqueous zinc‐ion batteries.</description><subject>Aqueous electrolytes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Shielding</subject><subject>Zinc</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNjM1qwkAURgepoLXdur7QtTo_MZpl0JZ2J6gg3ciYmTQjca7OTAp25SP4jH0SI4hrV-fAd_gI6TLaZ5TygVT5rs8pFyweRqxB2ixmcU9QPn66O1u1yLP3W0rZaCSiNinmhdGlMvbn_3RObVagqx2mWG1KDTOHQWfBoIWFrJl5wBy-dkbJP9wf3ZXGakiVMsH8asjRwbIMTvogrwffxmaQWlT6hTRzWXr9emOHvH28Lyafvb3DQ6V9WG-xcrae1oLGyVAkUcLFY9UFiRtP0A</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Gu, Xingxing</creator><creator>Du, Yixun</creator><creator>Ren, Xiaolei</creator><creator>Ma, Fengcan</creator><creator>Zhang, Xianfu</creator><creator>Li, Meng</creator><creator>Wang, Qinghong</creator><creator>Zhang, Long</creator><creator>Lai, Chao</creator><creator>Zhang, Shanqing</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20240601</creationdate><title>Shielding‐Anchoring Double Protection Tactics of Imidazopyridazine Additive for Ultrastable Zinc Anode</title><author>Gu, Xingxing ; Du, Yixun ; Ren, Xiaolei ; Ma, Fengcan ; Zhang, Xianfu ; Li, Meng ; Wang, Qinghong ; Zhang, Long ; Lai, Chao ; Zhang, Shanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30695394923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous electrolytes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Shielding</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Xingxing</creatorcontrib><creatorcontrib>Du, Yixun</creatorcontrib><creatorcontrib>Ren, Xiaolei</creatorcontrib><creatorcontrib>Ma, Fengcan</creatorcontrib><creatorcontrib>Zhang, Xianfu</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wang, Qinghong</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Lai, Chao</creatorcontrib><creatorcontrib>Zhang, Shanqing</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Xingxing</au><au>Du, Yixun</au><au>Ren, Xiaolei</au><au>Ma, Fengcan</au><au>Zhang, Xianfu</au><au>Li, Meng</au><au>Wang, Qinghong</au><au>Zhang, Long</au><au>Lai, Chao</au><au>Zhang, Shanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shielding‐Anchoring Double Protection Tactics of Imidazopyridazine Additive for Ultrastable Zinc Anode</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>25</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aqueous zinc‐based energy storage devices have competitive advantages such as high power density, good safety, and wide source. However, because of the direct touch among zinc anode and aqueous electrolyte, dendrite growth and electrode side reactions are easy to occur in the plating and striping process, which seriously hinders the further development of aqueous zinc‐based energy storage devices. Therefore, it is urgent to solve the above problems to expand the existing energy storage devices. In this work, by adding an imidazo[1,2‐b]pyridazine (IP) electrolyte additive, the dendrites' growth and corrosion on the zinc anode surface could be effectively inhibited by the shielding‐anchoring double effects, which are verified by the comprehensive in situ and ex situ characterization techniques as well as the theoretical calculation support. Accordingly, the IP‐based electrolyte encourages extremely high stable zinc anode (cycling 2200 h at 1 mA cm−2) with high average Coulombic efficiency (98.72%). Moreover, the IP‐based Zn‐V2O5 full battery also exhibits excellent reversible capacity, reaching 160.8 mAh g−1 after 400 cycles at 2 A g−1. Through a straightforward alteration to the Zn anode surface, this study considerably enhances the use of highly stable and secure aqueous zinc‐ion batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202316541</doi></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-06, Vol.34 (25)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3069539492
source Wiley Online Library Journals Frontfile Complete
subjects Aqueous electrolytes
Electrolytes
Energy storage
Shielding
Zinc
title Shielding‐Anchoring Double Protection Tactics of Imidazopyridazine Additive for Ultrastable Zinc Anode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shielding%E2%80%90Anchoring%20Double%20Protection%20Tactics%20of%20Imidazopyridazine%20Additive%20for%20Ultrastable%20Zinc%20Anode&rft.jtitle=Advanced%20functional%20materials&rft.au=Gu,%20Xingxing&rft.date=2024-06-01&rft.volume=34&rft.issue=25&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202316541&rft_dat=%3Cproquest%3E3069539492%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069539492&rft_id=info:pmid/&rfr_iscdi=true