Shielding‐Anchoring Double Protection Tactics of Imidazopyridazine Additive for Ultrastable Zinc Anode
Aqueous zinc‐based energy storage devices have competitive advantages such as high power density, good safety, and wide source. However, because of the direct touch among zinc anode and aqueous electrolyte, dendrite growth and electrode side reactions are easy to occur in the plating and striping pr...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-06, Vol.34 (25) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 25 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Gu, Xingxing Du, Yixun Ren, Xiaolei Ma, Fengcan Zhang, Xianfu Li, Meng Wang, Qinghong Zhang, Long Lai, Chao Zhang, Shanqing |
description | Aqueous zinc‐based energy storage devices have competitive advantages such as high power density, good safety, and wide source. However, because of the direct touch among zinc anode and aqueous electrolyte, dendrite growth and electrode side reactions are easy to occur in the plating and striping process, which seriously hinders the further development of aqueous zinc‐based energy storage devices. Therefore, it is urgent to solve the above problems to expand the existing energy storage devices. In this work, by adding an imidazo[1,2‐b]pyridazine (IP) electrolyte additive, the dendrites' growth and corrosion on the zinc anode surface could be effectively inhibited by the shielding‐anchoring double effects, which are verified by the comprehensive in situ and ex situ characterization techniques as well as the theoretical calculation support. Accordingly, the IP‐based electrolyte encourages extremely high stable zinc anode (cycling 2200 h at 1 mA cm−2) with high average Coulombic efficiency (98.72%). Moreover, the IP‐based Zn‐V2O5 full battery also exhibits excellent reversible capacity, reaching 160.8 mAh g−1 after 400 cycles at 2 A g−1. Through a straightforward alteration to the Zn anode surface, this study considerably enhances the use of highly stable and secure aqueous zinc‐ion batteries. |
doi_str_mv | 10.1002/adfm.202316541 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3069539492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069539492</sourcerecordid><originalsourceid>FETCH-proquest_journals_30695394923</originalsourceid><addsrcrecordid>eNqNjM1qwkAURgepoLXdur7QtTo_MZpl0JZ2J6gg3ciYmTQjca7OTAp25SP4jH0SI4hrV-fAd_gI6TLaZ5TygVT5rs8pFyweRqxB2ixmcU9QPn66O1u1yLP3W0rZaCSiNinmhdGlMvbn_3RObVagqx2mWG1KDTOHQWfBoIWFrJl5wBy-dkbJP9wf3ZXGakiVMsH8asjRwbIMTvogrwffxmaQWlT6hTRzWXr9emOHvH28Lyafvb3DQ6V9WG-xcrae1oLGyVAkUcLFY9UFiRtP0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069539492</pqid></control><display><type>article</type><title>Shielding‐Anchoring Double Protection Tactics of Imidazopyridazine Additive for Ultrastable Zinc Anode</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gu, Xingxing ; Du, Yixun ; Ren, Xiaolei ; Ma, Fengcan ; Zhang, Xianfu ; Li, Meng ; Wang, Qinghong ; Zhang, Long ; Lai, Chao ; Zhang, Shanqing</creator><creatorcontrib>Gu, Xingxing ; Du, Yixun ; Ren, Xiaolei ; Ma, Fengcan ; Zhang, Xianfu ; Li, Meng ; Wang, Qinghong ; Zhang, Long ; Lai, Chao ; Zhang, Shanqing</creatorcontrib><description>Aqueous zinc‐based energy storage devices have competitive advantages such as high power density, good safety, and wide source. However, because of the direct touch among zinc anode and aqueous electrolyte, dendrite growth and electrode side reactions are easy to occur in the plating and striping process, which seriously hinders the further development of aqueous zinc‐based energy storage devices. Therefore, it is urgent to solve the above problems to expand the existing energy storage devices. In this work, by adding an imidazo[1,2‐b]pyridazine (IP) electrolyte additive, the dendrites' growth and corrosion on the zinc anode surface could be effectively inhibited by the shielding‐anchoring double effects, which are verified by the comprehensive in situ and ex situ characterization techniques as well as the theoretical calculation support. Accordingly, the IP‐based electrolyte encourages extremely high stable zinc anode (cycling 2200 h at 1 mA cm−2) with high average Coulombic efficiency (98.72%). Moreover, the IP‐based Zn‐V2O5 full battery also exhibits excellent reversible capacity, reaching 160.8 mAh g−1 after 400 cycles at 2 A g−1. Through a straightforward alteration to the Zn anode surface, this study considerably enhances the use of highly stable and secure aqueous zinc‐ion batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202316541</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Electrolytes ; Energy storage ; Shielding ; Zinc</subject><ispartof>Advanced functional materials, 2024-06, Vol.34 (25)</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Gu, Xingxing</creatorcontrib><creatorcontrib>Du, Yixun</creatorcontrib><creatorcontrib>Ren, Xiaolei</creatorcontrib><creatorcontrib>Ma, Fengcan</creatorcontrib><creatorcontrib>Zhang, Xianfu</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wang, Qinghong</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Lai, Chao</creatorcontrib><creatorcontrib>Zhang, Shanqing</creatorcontrib><title>Shielding‐Anchoring Double Protection Tactics of Imidazopyridazine Additive for Ultrastable Zinc Anode</title><title>Advanced functional materials</title><description>Aqueous zinc‐based energy storage devices have competitive advantages such as high power density, good safety, and wide source. However, because of the direct touch among zinc anode and aqueous electrolyte, dendrite growth and electrode side reactions are easy to occur in the plating and striping process, which seriously hinders the further development of aqueous zinc‐based energy storage devices. Therefore, it is urgent to solve the above problems to expand the existing energy storage devices. In this work, by adding an imidazo[1,2‐b]pyridazine (IP) electrolyte additive, the dendrites' growth and corrosion on the zinc anode surface could be effectively inhibited by the shielding‐anchoring double effects, which are verified by the comprehensive in situ and ex situ characterization techniques as well as the theoretical calculation support. Accordingly, the IP‐based electrolyte encourages extremely high stable zinc anode (cycling 2200 h at 1 mA cm−2) with high average Coulombic efficiency (98.72%). Moreover, the IP‐based Zn‐V2O5 full battery also exhibits excellent reversible capacity, reaching 160.8 mAh g−1 after 400 cycles at 2 A g−1. Through a straightforward alteration to the Zn anode surface, this study considerably enhances the use of highly stable and secure aqueous zinc‐ion batteries.</description><subject>Aqueous electrolytes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Shielding</subject><subject>Zinc</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNjM1qwkAURgepoLXdur7QtTo_MZpl0JZ2J6gg3ciYmTQjca7OTAp25SP4jH0SI4hrV-fAd_gI6TLaZ5TygVT5rs8pFyweRqxB2ixmcU9QPn66O1u1yLP3W0rZaCSiNinmhdGlMvbn_3RObVagqx2mWG1KDTOHQWfBoIWFrJl5wBy-dkbJP9wf3ZXGakiVMsH8asjRwbIMTvogrwffxmaQWlT6hTRzWXr9emOHvH28Lyafvb3DQ6V9WG-xcrae1oLGyVAkUcLFY9UFiRtP0A</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Gu, Xingxing</creator><creator>Du, Yixun</creator><creator>Ren, Xiaolei</creator><creator>Ma, Fengcan</creator><creator>Zhang, Xianfu</creator><creator>Li, Meng</creator><creator>Wang, Qinghong</creator><creator>Zhang, Long</creator><creator>Lai, Chao</creator><creator>Zhang, Shanqing</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20240601</creationdate><title>Shielding‐Anchoring Double Protection Tactics of Imidazopyridazine Additive for Ultrastable Zinc Anode</title><author>Gu, Xingxing ; Du, Yixun ; Ren, Xiaolei ; Ma, Fengcan ; Zhang, Xianfu ; Li, Meng ; Wang, Qinghong ; Zhang, Long ; Lai, Chao ; Zhang, Shanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30695394923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous electrolytes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Shielding</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Xingxing</creatorcontrib><creatorcontrib>Du, Yixun</creatorcontrib><creatorcontrib>Ren, Xiaolei</creatorcontrib><creatorcontrib>Ma, Fengcan</creatorcontrib><creatorcontrib>Zhang, Xianfu</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wang, Qinghong</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Lai, Chao</creatorcontrib><creatorcontrib>Zhang, Shanqing</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Xingxing</au><au>Du, Yixun</au><au>Ren, Xiaolei</au><au>Ma, Fengcan</au><au>Zhang, Xianfu</au><au>Li, Meng</au><au>Wang, Qinghong</au><au>Zhang, Long</au><au>Lai, Chao</au><au>Zhang, Shanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shielding‐Anchoring Double Protection Tactics of Imidazopyridazine Additive for Ultrastable Zinc Anode</atitle><jtitle>Advanced functional materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>25</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aqueous zinc‐based energy storage devices have competitive advantages such as high power density, good safety, and wide source. However, because of the direct touch among zinc anode and aqueous electrolyte, dendrite growth and electrode side reactions are easy to occur in the plating and striping process, which seriously hinders the further development of aqueous zinc‐based energy storage devices. Therefore, it is urgent to solve the above problems to expand the existing energy storage devices. In this work, by adding an imidazo[1,2‐b]pyridazine (IP) electrolyte additive, the dendrites' growth and corrosion on the zinc anode surface could be effectively inhibited by the shielding‐anchoring double effects, which are verified by the comprehensive in situ and ex situ characterization techniques as well as the theoretical calculation support. Accordingly, the IP‐based electrolyte encourages extremely high stable zinc anode (cycling 2200 h at 1 mA cm−2) with high average Coulombic efficiency (98.72%). Moreover, the IP‐based Zn‐V2O5 full battery also exhibits excellent reversible capacity, reaching 160.8 mAh g−1 after 400 cycles at 2 A g−1. Through a straightforward alteration to the Zn anode surface, this study considerably enhances the use of highly stable and secure aqueous zinc‐ion batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202316541</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-06, Vol.34 (25) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3069539492 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aqueous electrolytes Electrolytes Energy storage Shielding Zinc |
title | Shielding‐Anchoring Double Protection Tactics of Imidazopyridazine Additive for Ultrastable Zinc Anode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shielding%E2%80%90Anchoring%20Double%20Protection%20Tactics%20of%20Imidazopyridazine%20Additive%20for%20Ultrastable%20Zinc%20Anode&rft.jtitle=Advanced%20functional%20materials&rft.au=Gu,%20Xingxing&rft.date=2024-06-01&rft.volume=34&rft.issue=25&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202316541&rft_dat=%3Cproquest%3E3069539492%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069539492&rft_id=info:pmid/&rfr_iscdi=true |