An efficient Bayesian multi-model framework to analyze reliability of rock structures with limited investigation data

Availability of insufficient data is a frequent issue resulting in the inaccurate probabilistic characterization of properties and, finally the inaccurate reliability estimates of rock structures. This study presents a Bayesian multi-model inference methodology which couples multi-model inference wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica 2024-06, Vol.19 (6), p.3299-3319
Hauptverfasser: Kumar, Akshay, Tiwari, Gaurav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3319
container_issue 6
container_start_page 3299
container_title Acta geotechnica
container_volume 19
creator Kumar, Akshay
Tiwari, Gaurav
description Availability of insufficient data is a frequent issue resulting in the inaccurate probabilistic characterization of properties and, finally the inaccurate reliability estimates of rock structures. This study presents a Bayesian multi-model inference methodology which couples multi-model inference with traditional Bayesian approach to characterize uncertainties in both—(1) probability models, and (2) model parameters of rock properties arising due to insufficient data, and to estimate the reliability of rock slopes and tunnels considering their effect. Further, this methodology was coupled with Sobol’s sensitivity, metropolis–hastings Markov chain Monte Carlo sampling and moving least square-response surface method to improve the computational efficiency and applicability for problems with implicit performance functions (PFs). Methodology is demonstrated for a Himalayan rock slope (implicit PF) prone to stress-controlled failure in India. Analysis is also performed using recently developed limited data reliability methods, i.e., traditional Bayesian (considers uncertainty in model parameters only) and bootstrap-based re-sampling reliability methods (considers uncertainties in model types and parameters). Proposed methodology is concluded to be superior to other methods due to its capability of considering uncertainties in both model types and parameters, and to include the prior information in the analysis.
doi_str_mv 10.1007/s11440-023-02061-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3069349300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069349300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-57bfd0aceb737bad51a6ac206f7ff6aa0399ae1ba36f7909922ec74223e609f83</originalsourceid><addsrcrecordid>eNp9UE1LxDAQLaLguvoHPAU8VydJN7XHVfwCwYuew7SdrNltG01Spf56oyt68zDMY3jvMe9l2TGHUw5QngXOiwJyEDINKJ6rnWzGzxPgXMrdXywW-9lBCGsAJUWhZtm4HBgZYxtLQ2QXOFGwOLB-7KLNe9dSx4zHnt6d37DoGA7YTR_EPHUWa9vZODFnmHfNhoXoxyaOngJ7t_GZdba3kVpmhzcK0a4wWjewFiMeZnsGu0BHP3uePV1fPV7e5vcPN3eXy_u8ESXEfFHWpgVsqC5lWWO74KiwSflMaYxCBFlVSLxGmS4VVJUQ1JSFEJIUVOZczrOTre-Ld69jekKv3ehThKAlqEoWlQRILLFlNd6F4MnoF2979JPmoL_q1dt6dapXf9erVRLJrSgk8rAi_2f9j-oT9PV__A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069349300</pqid></control><display><type>article</type><title>An efficient Bayesian multi-model framework to analyze reliability of rock structures with limited investigation data</title><source>SpringerNature Complete Journals</source><creator>Kumar, Akshay ; Tiwari, Gaurav</creator><creatorcontrib>Kumar, Akshay ; Tiwari, Gaurav</creatorcontrib><description>Availability of insufficient data is a frequent issue resulting in the inaccurate probabilistic characterization of properties and, finally the inaccurate reliability estimates of rock structures. This study presents a Bayesian multi-model inference methodology which couples multi-model inference with traditional Bayesian approach to characterize uncertainties in both—(1) probability models, and (2) model parameters of rock properties arising due to insufficient data, and to estimate the reliability of rock slopes and tunnels considering their effect. Further, this methodology was coupled with Sobol’s sensitivity, metropolis–hastings Markov chain Monte Carlo sampling and moving least square-response surface method to improve the computational efficiency and applicability for problems with implicit performance functions (PFs). Methodology is demonstrated for a Himalayan rock slope (implicit PF) prone to stress-controlled failure in India. Analysis is also performed using recently developed limited data reliability methods, i.e., traditional Bayesian (considers uncertainty in model parameters only) and bootstrap-based re-sampling reliability methods (considers uncertainties in model types and parameters). Proposed methodology is concluded to be superior to other methods due to its capability of considering uncertainties in both model types and parameters, and to include the prior information in the analysis.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-023-02061-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bayesian analysis ; Bayesian theory ; Complex Fluids and Microfluidics ; Engineering ; Estimates ; Foundations ; Geoengineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydraulics ; Inference ; Markov analysis ; Markov chains ; Mathematical models ; Methods ; Parameters ; Probability distribution ; Probability theory ; Random variables ; Reliability ; Reliability analysis ; Reliability engineering ; Research Paper ; Response surface methodology ; Rock ; Rock properties ; Rocks ; Sampling ; Soft and Granular Matter ; Soil Science &amp; Conservation ; Solid Mechanics ; Statistical analysis ; Structural reliability ; Uncertainty</subject><ispartof>Acta geotechnica, 2024-06, Vol.19 (6), p.3299-3319</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-57bfd0aceb737bad51a6ac206f7ff6aa0399ae1ba36f7909922ec74223e609f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-023-02061-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-023-02061-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, Akshay</creatorcontrib><creatorcontrib>Tiwari, Gaurav</creatorcontrib><title>An efficient Bayesian multi-model framework to analyze reliability of rock structures with limited investigation data</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>Availability of insufficient data is a frequent issue resulting in the inaccurate probabilistic characterization of properties and, finally the inaccurate reliability estimates of rock structures. This study presents a Bayesian multi-model inference methodology which couples multi-model inference with traditional Bayesian approach to characterize uncertainties in both—(1) probability models, and (2) model parameters of rock properties arising due to insufficient data, and to estimate the reliability of rock slopes and tunnels considering their effect. Further, this methodology was coupled with Sobol’s sensitivity, metropolis–hastings Markov chain Monte Carlo sampling and moving least square-response surface method to improve the computational efficiency and applicability for problems with implicit performance functions (PFs). Methodology is demonstrated for a Himalayan rock slope (implicit PF) prone to stress-controlled failure in India. Analysis is also performed using recently developed limited data reliability methods, i.e., traditional Bayesian (considers uncertainty in model parameters only) and bootstrap-based re-sampling reliability methods (considers uncertainties in model types and parameters). Proposed methodology is concluded to be superior to other methods due to its capability of considering uncertainties in both model types and parameters, and to include the prior information in the analysis.</description><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Complex Fluids and Microfluidics</subject><subject>Engineering</subject><subject>Estimates</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydraulics</subject><subject>Inference</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Parameters</subject><subject>Probability distribution</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>Research Paper</subject><subject>Response surface methodology</subject><subject>Rock</subject><subject>Rock properties</subject><subject>Rocks</subject><subject>Sampling</subject><subject>Soft and Granular Matter</subject><subject>Soil Science &amp; Conservation</subject><subject>Solid Mechanics</subject><subject>Statistical analysis</subject><subject>Structural reliability</subject><subject>Uncertainty</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQLaLguvoHPAU8VydJN7XHVfwCwYuew7SdrNltG01Spf56oyt68zDMY3jvMe9l2TGHUw5QngXOiwJyEDINKJ6rnWzGzxPgXMrdXywW-9lBCGsAJUWhZtm4HBgZYxtLQ2QXOFGwOLB-7KLNe9dSx4zHnt6d37DoGA7YTR_EPHUWa9vZODFnmHfNhoXoxyaOngJ7t_GZdba3kVpmhzcK0a4wWjewFiMeZnsGu0BHP3uePV1fPV7e5vcPN3eXy_u8ESXEfFHWpgVsqC5lWWO74KiwSflMaYxCBFlVSLxGmS4VVJUQ1JSFEJIUVOZczrOTre-Ld69jekKv3ehThKAlqEoWlQRILLFlNd6F4MnoF2979JPmoL_q1dt6dapXf9erVRLJrSgk8rAi_2f9j-oT9PV__A</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kumar, Akshay</creator><creator>Tiwari, Gaurav</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20240601</creationdate><title>An efficient Bayesian multi-model framework to analyze reliability of rock structures with limited investigation data</title><author>Kumar, Akshay ; Tiwari, Gaurav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-57bfd0aceb737bad51a6ac206f7ff6aa0399ae1ba36f7909922ec74223e609f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Complex Fluids and Microfluidics</topic><topic>Engineering</topic><topic>Estimates</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydraulics</topic><topic>Inference</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Parameters</topic><topic>Probability distribution</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>Research Paper</topic><topic>Response surface methodology</topic><topic>Rock</topic><topic>Rock properties</topic><topic>Rocks</topic><topic>Sampling</topic><topic>Soft and Granular Matter</topic><topic>Soil Science &amp; Conservation</topic><topic>Solid Mechanics</topic><topic>Statistical analysis</topic><topic>Structural reliability</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Akshay</creatorcontrib><creatorcontrib>Tiwari, Gaurav</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Akshay</au><au>Tiwari, Gaurav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient Bayesian multi-model framework to analyze reliability of rock structures with limited investigation data</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>19</volume><issue>6</issue><spage>3299</spage><epage>3319</epage><pages>3299-3319</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>Availability of insufficient data is a frequent issue resulting in the inaccurate probabilistic characterization of properties and, finally the inaccurate reliability estimates of rock structures. This study presents a Bayesian multi-model inference methodology which couples multi-model inference with traditional Bayesian approach to characterize uncertainties in both—(1) probability models, and (2) model parameters of rock properties arising due to insufficient data, and to estimate the reliability of rock slopes and tunnels considering their effect. Further, this methodology was coupled with Sobol’s sensitivity, metropolis–hastings Markov chain Monte Carlo sampling and moving least square-response surface method to improve the computational efficiency and applicability for problems with implicit performance functions (PFs). Methodology is demonstrated for a Himalayan rock slope (implicit PF) prone to stress-controlled failure in India. Analysis is also performed using recently developed limited data reliability methods, i.e., traditional Bayesian (considers uncertainty in model parameters only) and bootstrap-based re-sampling reliability methods (considers uncertainties in model types and parameters). Proposed methodology is concluded to be superior to other methods due to its capability of considering uncertainties in both model types and parameters, and to include the prior information in the analysis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-023-02061-6</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-1125
ispartof Acta geotechnica, 2024-06, Vol.19 (6), p.3299-3319
issn 1861-1125
1861-1133
language eng
recordid cdi_proquest_journals_3069349300
source SpringerNature Complete Journals
subjects Bayesian analysis
Bayesian theory
Complex Fluids and Microfluidics
Engineering
Estimates
Foundations
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Hydraulics
Inference
Markov analysis
Markov chains
Mathematical models
Methods
Parameters
Probability distribution
Probability theory
Random variables
Reliability
Reliability analysis
Reliability engineering
Research Paper
Response surface methodology
Rock
Rock properties
Rocks
Sampling
Soft and Granular Matter
Soil Science & Conservation
Solid Mechanics
Statistical analysis
Structural reliability
Uncertainty
title An efficient Bayesian multi-model framework to analyze reliability of rock structures with limited investigation data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20Bayesian%20multi-model%20framework%20to%20analyze%20reliability%20of%20rock%20structures%20with%20limited%20investigation%20data&rft.jtitle=Acta%20geotechnica&rft.au=Kumar,%20Akshay&rft.date=2024-06-01&rft.volume=19&rft.issue=6&rft.spage=3299&rft.epage=3319&rft.pages=3299-3319&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-023-02061-6&rft_dat=%3Cproquest_cross%3E3069349300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069349300&rft_id=info:pmid/&rfr_iscdi=true