A Realistic Evaluation of LLMs for Quotation Attribution in Literary Texts: A Case Study of LLaMa3
Large Language Models (LLMs) zero-shot and few-shot performance are subject to memorization and data contamination, complicating the assessment of their validity. In literary tasks, the performance of LLMs is often correlated to the degree of book memorization. In this work, we carry out a realistic...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gaspard, Michel Epure, Elena V Hennequin, Romain Cerisara, Christophe |
description | Large Language Models (LLMs) zero-shot and few-shot performance are subject to memorization and data contamination, complicating the assessment of their validity. In literary tasks, the performance of LLMs is often correlated to the degree of book memorization. In this work, we carry out a realistic evaluation of LLMs for quotation attribution in novels, taking the instruction fined-tuned version of Llama3 as an example. We design a task-specific memorization measure and use it to show that Llama3's ability to perform quotation attribution is positively correlated to the novel degree of memorization. However, Llama3 still performs impressively well on books it has not memorized nor seen. Data and code will be made publicly available. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3069346947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069346947</sourcerecordid><originalsourceid>FETCH-proquest_journals_30693469473</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_cMF1ISZ9WHelVFy0C7X7kmoKKaXR5Ebs3yvqB7ia4cxhZsRjnG-CbcjYgvjW9pRSFicsirhH2gxOUgzKorpA8RCDE6j0CLqDsqwsdNrA0Wn80gzRqNZ9uhqhVCiNMBPU8ol2Bxnkwko4o7tO3wdRCb4i804MVvq_XJL1vqjzQ3Az-u6kxabXzozvqeE0TnkYp2HC_7NeqwlD7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069346947</pqid></control><display><type>article</type><title>A Realistic Evaluation of LLMs for Quotation Attribution in Literary Texts: A Case Study of LLaMa3</title><source>Free E- Journals</source><creator>Gaspard, Michel ; Epure, Elena V ; Hennequin, Romain ; Cerisara, Christophe</creator><creatorcontrib>Gaspard, Michel ; Epure, Elena V ; Hennequin, Romain ; Cerisara, Christophe</creatorcontrib><description>Large Language Models (LLMs) zero-shot and few-shot performance are subject to memorization and data contamination, complicating the assessment of their validity. In literary tasks, the performance of LLMs is often correlated to the degree of book memorization. In this work, we carry out a realistic evaluation of LLMs for quotation attribution in novels, taking the instruction fined-tuned version of Llama3 as an example. We design a task-specific memorization measure and use it to show that Llama3's ability to perform quotation attribution is positively correlated to the novel degree of memorization. However, Llama3 still performs impressively well on books it has not memorized nor seen. Data and code will be made publicly available.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Large language models</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gaspard, Michel</creatorcontrib><creatorcontrib>Epure, Elena V</creatorcontrib><creatorcontrib>Hennequin, Romain</creatorcontrib><creatorcontrib>Cerisara, Christophe</creatorcontrib><title>A Realistic Evaluation of LLMs for Quotation Attribution in Literary Texts: A Case Study of LLaMa3</title><title>arXiv.org</title><description>Large Language Models (LLMs) zero-shot and few-shot performance are subject to memorization and data contamination, complicating the assessment of their validity. In literary tasks, the performance of LLMs is often correlated to the degree of book memorization. In this work, we carry out a realistic evaluation of LLMs for quotation attribution in novels, taking the instruction fined-tuned version of Llama3 as an example. We design a task-specific memorization measure and use it to show that Llama3's ability to perform quotation attribution is positively correlated to the novel degree of memorization. However, Llama3 still performs impressively well on books it has not memorized nor seen. Data and code will be made publicly available.</description><subject>Large language models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjMsKwjAURIMgWLT_cMF1ISZ9WHelVFy0C7X7kmoKKaXR5Ebs3yvqB7ia4cxhZsRjnG-CbcjYgvjW9pRSFicsirhH2gxOUgzKorpA8RCDE6j0CLqDsqwsdNrA0Wn80gzRqNZ9uhqhVCiNMBPU8ol2Bxnkwko4o7tO3wdRCb4i804MVvq_XJL1vqjzQ3Az-u6kxabXzozvqeE0TnkYp2HC_7NeqwlD7Q</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Gaspard, Michel</creator><creator>Epure, Elena V</creator><creator>Hennequin, Romain</creator><creator>Cerisara, Christophe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240617</creationdate><title>A Realistic Evaluation of LLMs for Quotation Attribution in Literary Texts: A Case Study of LLaMa3</title><author>Gaspard, Michel ; Epure, Elena V ; Hennequin, Romain ; Cerisara, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30693469473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Large language models</topic><toplevel>online_resources</toplevel><creatorcontrib>Gaspard, Michel</creatorcontrib><creatorcontrib>Epure, Elena V</creatorcontrib><creatorcontrib>Hennequin, Romain</creatorcontrib><creatorcontrib>Cerisara, Christophe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaspard, Michel</au><au>Epure, Elena V</au><au>Hennequin, Romain</au><au>Cerisara, Christophe</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Realistic Evaluation of LLMs for Quotation Attribution in Literary Texts: A Case Study of LLaMa3</atitle><jtitle>arXiv.org</jtitle><date>2024-06-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Large Language Models (LLMs) zero-shot and few-shot performance are subject to memorization and data contamination, complicating the assessment of their validity. In literary tasks, the performance of LLMs is often correlated to the degree of book memorization. In this work, we carry out a realistic evaluation of LLMs for quotation attribution in novels, taking the instruction fined-tuned version of Llama3 as an example. We design a task-specific memorization measure and use it to show that Llama3's ability to perform quotation attribution is positively correlated to the novel degree of memorization. However, Llama3 still performs impressively well on books it has not memorized nor seen. Data and code will be made publicly available.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3069346947 |
source | Free E- Journals |
subjects | Large language models |
title | A Realistic Evaluation of LLMs for Quotation Attribution in Literary Texts: A Case Study of LLaMa3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Realistic%20Evaluation%20of%20LLMs%20for%20Quotation%20Attribution%20in%20Literary%20Texts:%20A%20Case%20Study%20of%20LLaMa3&rft.jtitle=arXiv.org&rft.au=Gaspard,%20Michel&rft.date=2024-06-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3069346947%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069346947&rft_id=info:pmid/&rfr_iscdi=true |